<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于Zero-Shot-CoT的對話價值觀優先級標注方法

A Method for Annotating Dialogue Value Priority Based on Zero-Shot Chain-of-Thought

  • 摘要: 價值觀優先級識別旨在識別文本背后隱含的價值觀優先級屬性,從而判斷其是否與特定的價值觀及其類型相符,對于用戶語言檢測、評估大語言模型生成內容和探究大語言模型對人類價值觀優先級的評估能力至關重要。目前,由于缺乏對話場景下的人類價值觀識別數據集,在對話中建模并識別人類價值觀優先級的研究仍未被觸及。因此,構建高質量的對話價值觀優先級識別數據集是首要任務。然而,標注對話價值觀優先級識別數據集要求標注者具備一定專業知識儲備,標注門檻較高,因此,本文基于大語言模型對現有的對話語料進行標注,提供了一個對話價值觀優先級識別數據集的標注案例,擴展了基于大語言模型的數據標注的應用。具體來說,我們設計了一種基于Zero-Shot-CoT的對話價值觀標注方法,模擬了人類標注結果,并通過本文提出的對話價值觀優先級標注方法,構建了一個大規模對話價值觀識別數據集ValueCon。有效性實驗結果表明,與人工標注的數據集相比,ValueCon數據集能夠更有效的訓練并提升模型性能。

     

    Abstract: Value priority identification aims to uncover the implicit value priority attributes underlying a text, determining whether they align with specific values and their categories. This task is critical for detecting user language, evaluating content generated by large language models (LLMs), and exploring the ability of LLMs to assess human value priorities. However, due to the lack of datasets for human value priority identification in dialogue scenarios, research on modeling and identifying such priorities in conversations remains unexplored. Consequently, constructing a high-quality dataset for value priority identification in dialogues has become a pressing need.The creation of such a dataset poses significant challenges, as it requires annotators to possess substantial domain expertise, resulting in high annotation barriers. To address this issue, this study employs LLMs to annotate existing dialogue data, providing an annotated example of a value priority identification dataset in dialogues. This approach extends the application of LLMs in data annotation.Specifically, we propose a novel annotation methodology for dialogue value priority identification based on a Zero-Shot Chain-of-Thought approach, simulating human annotation results. Using this methodology, we construct a large-scale dialogue value identification dataset, ValueCon. Experimental results demonstrate the effectiveness of the proposed annotation method, as the ValueCon dataset outperforms manually annotated datasets in training and enhancing model performance.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164