<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于圖神經網絡增強通信特征的僵尸網絡異常通信檢測

Botnet abnormal communication detection based on GNN-enhanced traffic features

  • 摘要: 工業互聯網是國家關鍵信息基礎設施的重要組成部分,其通過人、機、物的全面互聯,推動形成全新的工業生產制造和服務體系。然而,傳統工業設備存在大量安全漏洞,在聯網過程中很容易被攻擊者惡意利用,進而造成嚴重的安全事故或經濟損失。僵尸網絡是目前工業互聯網面臨的主要安全威脅之一,其通過漏洞利用、病毒傳播等手段控制大量聯網設備,實現對目標網絡的大規模協同攻擊。傳統基于規則或閾值的檢測方法過度依賴于人工規則制定或閾值設定,傳統機器學習技術對復雜網絡高維通信特征的自動處理能力有限,因此對僵尸網絡檢測效果不佳。鑒于聯網設備之間的高度互聯特性,本文采用圖結構建模復雜的設備通信網絡,以準確描述網絡拓撲結構。在此基礎上,提出一種基于圖神經網絡增強通信特征的僵尸網絡異常通信檢測模型,充分發掘復雜網絡通信所產生的豐富的節點特征與通信特征,并通過圖神經網絡實現網絡中節點信息的傳播與聚合,以獲得更準確的節點聚合特征表示。再用節點聚合特征增強通信特征,獲得更準確的通信特征表示。最后,采用多層感知機模型對增強的通信特征進行自動分類,實現僵尸網絡異常通信檢測。我們在大型公開數據集CTU-13上進行了綜合實驗驗證。實驗結果表明本文所提出的方案與傳統異常檢測方法相比,能更準確地檢測僵尸網絡異常通信。

     

    Abstract: Industrial Internet is an important part of the national critical information infrastructure. It promotes the formation of a new architecture of industrial production, manufacturing and service through the comprehensive interconnection of people, machines and things. However, there exist a great number of security vulnerabilities in traditional industrial devices. They can be exploited maliciously during device interconnection, then causing serious security accidents or economic losses. Botnet is a main security threat that Industrial Internet is currently facing. It can control a large number of networked devices through vulnerability exploitation and virus propagation, thereby achieving large-scale collaborative attacks on the target network. The traditional rule-based or threshold-based anomaly detection methods overly rely on manual rule formulation or threshold setting, and the traditional machine learning-based techniques are not good at automatically processing complex and high-dimensional network communication features, resulting in poor botnet detection performance. Considering the ubiquitous device-to-device connectivity in Industrial Internet, we use a graph structure to model the device communication network, in order to describe its topology accurately. On the basis of the graph model, we propose a novel botnet detection approach based on Graph Neural Network (GNN)-enhanced traffic features. It explores richer node and traffic features generated during network communication, and achieves node information propagation and aggregation in the whole network through GNN, thus to form more accurate aggregated node features. Then, aggregated node features are used to enhance traffic features. Finally, a MultiLayer Perceptron (MLP) model is used to automatically classify the enhanced traffic features, thus to achieve accurate detection of botnet communications. We conducted comprehensive experiments on a publicly available large-scale dataset CTU-13. The experimental results show that the proposed approach can achieve better detection performance than traditional anomaly detection methods.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164