<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

“吹塑-萃取”工藝制備隔膜及其在鋰離子電池中的應用研究

Battery separator prepared by "blow molding-extraction" process towards lithium ion batteries

  • 摘要: 電池隔膜作為儲能器件的關鍵組成部分直接影響電池的安全性與使用壽命。本研究提出了一種創新的“吹塑-萃取”工藝用于開發高性能聚烯烴電池隔膜。該工藝整合了熔融混合、擠出吹塑、氣體充填、縱向拉伸和冷卻等多個步驟。首先,通過調節不同組分的比例以及選擇適宜的造孔劑,最終獲得了63%的孔隙率和115%的吸液率。此外,萃取工序的引入有效地創造了均勻的微孔結構,顯著提升了電解質的離子傳輸效率,隔膜的離子導電率達到0.23 mS·cm-1。組裝的電池在0.1 C倍率下實現了166.58 mAh·g-1的放電比容量,并在經過25次循環后仍保持96.11%的庫倫效率。這些實驗結果表明,“吹塑-萃取”工藝不僅提升了隔膜的整體性能,而且為電池隔膜設計開發提供了一條新的技術路徑,極具學術價值和應用潛力。該方法為未來電池技術的發展奠定了堅實基礎,推動了電化學儲能領域的進一步研究與應用。

     

    Abstract: Battery separators as the key component of energy storage device is crucial for determining the safety and lifespan of batteries. This study introduces an innovative "blow molding-extraction" process for high performance separator development, which effectively integrates key steps, including melt mixing, extrusion blow molding, gas inflation, longitudinal stretching, and cooling. Firstly, by adjusting the component ratios and selecting appropriate pore-forming agents, separators with a porosity of 63% and a liquid absorption rate of 115% were produced. Furthermore, the introduction of the extraction process resulted in a uniform microporous structure that significantly enhanced the ionic transport efficiency of the electrolyte, yielding an ionic conductivity of 0.23 mS·cm-1. The assembled battery demonstrated a discharge specific capacity of 166.58 mAh·g-1 at a 0.1 C rate and maintained a coulombic efficiency of 96.11% after 25 cycles. These findings suggest that the "blow molding-extraction" process not only improves the overall performance of the separator but also provides a novel technological pathway for manufacturing high-end lithium battery separators, showcasing significant academic value and application potential. This method establishes a solid foundation for future advancements in battery technology and fosters further research and applications within the domain of electrochemical energy storage.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164