<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于電化學機理耦合模型的鋰電池SOC估計方法研究

Research on SOC Estimation Method of Lithium Battery Based on Electrochemical Mechanism Coupling Model

  • 摘要: 鋰離子電池的荷電狀態(SOC)估計作為BMS的核心功能之一,其精確估計能夠有效避免電池出現過充過放問題,從而延長電池使用壽命。針對等效電路模型和電化學模型的優缺點,本文建立了一種耦合模型,在提高模型精度的同時,能保證很好地實時性,并實時反映出電池內部反應機理。在耦合模型的基礎上,本文利用LM非線性最小二乘法對模型中的22個參數進行了辨識;其次,基于耦合模型對卡爾曼濾波算法進行了改進,將模型參數以及通過電化學模型計算出的開路電壓曲線代替實驗值,避免了采樣誤差和滯回特性的影響。經過UDDS、FUDS、DST工況的仿真驗證,其平均絕對誤差僅為18.6mV,28.4mV和24.7mV。在此基礎上,設計了電池放電實驗,在實驗DST電流工況下,EKF算法的提升最大,平均誤差降低了1%,SOC估計誤差得到有效改善。研究結果表明,雖然加入了電化學機理,但并未增加過多估算運行時間,且具有較好的實時性,能夠很好地實現在線估計鋰電池SOC。

     

    Abstract: As one of the core functions of BMS, the State of Charge (SOC) estimation of lithium-ion battery can effectively avoid the problem of overcharge and overdischarge of the battery, thus extending the battery life. According to the advantages and disadvantages of the equivalent circuit model and the electrochemical model, a coupling model is established in this paper, which can improve the accuracy of the model, ensure good real-time performance, and reflect the internal reaction mechanism of the battery in real time. Based on the coupling model, the LM nonlinear least square method is used to identify 22 parameters in the model. Secondly, the Kalman filter algorithm is improved based on the coupling model, and the model parameters and the open circuit voltage curve calculated by the electrochemical model are replaced by the experimental values, which avoids the influence of sampling error and hysteresis characteristics. In the simulation of UDDS, FUDS and DST conditions, the average absolute error is only 18.6mV, 28.4mV and 24.7mV. On this basis, the paper designed a battery discharge experiment. Under the experimental DST current condition, the EKF algorithm improved the most, the average error was reduced by 1%, and the SOC estimation error was effectively improved. The experimental results show that although the electrochemical mechanism is added, the estimated running time is not increased too much, which has good real-time performance, and the lithium battery SOC can be well estimated online in real time.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164