<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

非貴過渡金屬基電解水催化劑的研究進展及工程應用前景

Noble-metal free catalysts for electrochemical water splitting: Recent progress and perspectives on application

  • 摘要: 利用可再生電能分解水制取氫氣是理想的綠色制氫方式,是氫能技術發展的基礎,可有效緩解能源消耗對環境的污染,推動我國碳達峰碳中和目標的實現. 然而,電解水制氫過程需要消耗大量電能,且受到高昂的催化劑成本的限制,電解水制氫技術的規模化、可持續發展存在阻力. 因此,設計制備低成本、高性能的過渡金屬基催化劑,以及選擇熱力學上更易發生的氧化反應替代高能壘的析氧反應,是提高制氫效率的主要策略. 本文系統地總結了非貴過渡金屬基催化劑在電解水制氫中的應用,以及陽極替代反應在降低制氫能耗方面的最新研究進展. 此外,針對降低電解水制氫技術能耗,推進大規模、綠色節能的工業電解水制氫發展面臨的挑戰和新的機遇進行了展望.

     

    Abstract: Advanced water electrolysis powered by renewable energy is the most ideal and environmentally friendly approach for hydrogen production, serving as a technological foundation for large-scale hydrogen energy applications. This process can significantly reduce environmental pollution from energy consumption and support China’s carbon neutrality goals. However, the high energy demands and costs of noble metals pose challenges to scaling up hydrogen production from water electrolysis. To enhance efficiency, developing low-cost yet highly efficient noble metal-free electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial. Understanding the mechanisms behind HER and OER helps identify factors affecting electrocatalyst efficiency and design strategies to improve performance. Moreover, replacing the energy-intensive OER with more energy-efficient reactions offers another promising way to promote hydrogen production. This review summarizes recent advancements in nonprecious transition metal-based electrocatalysts for water electrolysis. Compared to noble metal-based electrocatalysts, nonprecious transition metal-based electrocatalysts like Fe, Co, and Ni-based oxides, (oxy) hydroxides, chalcogenides, and their derivates offer abundant reserves, lower costs, and adjustable catalytic properties, making them viable alternatives for large-scale water splitting. Understanding how these materials catalyze HER and the OER in different electrolytes is key to designing strategies, such as element doping, hetero-structuring, lattice defect construction, carbon composite coupling, and surface reconstruction, to reduce energy costs of electrochemical water splitting. The mechanisms behind these strategies for enhancing water electrolysis are explained through the thermodynamics of absorbed intermediates and the reaction kinetics. Beyond reducing overpotentials, another strategy involves replacing OER with the anodic oxidation reaction of organic molecules, effectively lowering the overall voltage. This review highlights recent progress and strategies for designing efficient electrocatalysts for the anodic oxidation of diverse organics, including urea, amine, hydrazine, alcohol, aldehyde, and sulfates, in substitution of water molecules. This review also addresses the gap between lab-scale research and industry-scale application of hydrogen production. It considers research on water splitting mechanisms, catalyst development, and OER-substituting electrooxidation reactions alongside electrolyzer design, synthesis costs, working conditions, and evaluation criteria. It also compares recent advancements in state-of-the-art water electrolysis technologies and summarizes their application prospects in hydrogen production. The review aims to provide theoretical guidance for designing and synthesizing advanced transition-metal-based electrocatalysts for HER, OER, and substitution anodic reactions for energy-efficient hydrogen production while also shedding light on opportunities for energy-efficient hybrid water-splitting applications.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164