<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于變密度法的SLM增材制造無人機承載接頭結構拓撲優化設計

Topological optimization design of SLM additive manufactured unmanned aerial vehicle bearing joint structure based on variable density method

  • 摘要: 針對某大型無人機機身輕量化需求,以選區激光熔化(Selective laser melting, SLM)制造的承載接頭結構為研究對象建立有限元模型,基于ANSYS Workbench計算接頭結構在不同極限工況下的強度、剛度性能,并根據材料最大許用應力準則進行校核. 采用拓撲優化變密度法,以應力最小化為目標、保留質量40%為響應約束,對接頭結構進行拓撲優化,根據優化結果設計兩種重構方案并進行靜力學驗證. 結果表明,兩種模型重構方案分別減重了13.8%和13.3%,在輕量化程度相近的情況下,方案II明顯具有更小的應力分布以及變形程度,即最優重構方案成功實現輕量化設計,與原結構件相比質量減輕13.3%,且相較于其他方案承載能力最強,滿足靜態結構設計要求. 為大型無人機承載接頭結構實現低成本、輕量化的結構設計探索了新的途徑.

     

    Abstract: To address the need for weight reduction in a large unmanned aerial vehicle (UAV) fuselage, this study focused on the load-bearing joint structure manufactured through selective laser melting (SLM). A finite element model of this structure was created and analyzed using ANSYS Workbench to evaluate its strength and stiffness under various extreme conditions. The design was verified against the material’s maximum permissible stress criterion. The study then employed topology optimization, using the variable density method aimed at minimizing stress, to optimize the joint structure while retaining 40% of its original mass. Based on the optimization results, two redesign schemes were developed and validated through static analysis. In the optimized models, significant material removal was observed in the middle part of the thin plate connected by the covers of Scheme I and Scheme II. The latter, in particular, demonstrated the largest side length of material removal at 56 mm. The weights of Scheme I and Scheme II were reduced to 0.325 kg and 0.327 kg, respectively, down from the initial mass of 0.377 kg, translating to weight reductions of 13.8% and 13.3%, respectively. The results indicated that Scheme II achieved a notable 13.3% weight reduction while maintaining the strongest load-bearing capacity among the alternatives. Under similar loading conditions, Scheme II exhibited lower stress concentration compared to Scheme I, with reductions of 21.6%, 5.0%, 20.6%, and 27.8% from working condition 1 to working condition 4, respectively. The “wide and short” aperture at the connecting plate helped disperse stress, enhancing load-bearing capacity while compromising on weight reduction. Additionally, Scheme II showed minimal deformation, with a minimum deformation of 0.16 mm, indicating higher stiffness and better resistance to deformation. This indicates that Scheme II is more efficient in maintaining structural integrity under load, making it a more viable option for the UAV fuselage’s load-bearing joint structure. This study demonstrates combining topology optimization with SLM can greatly shorten the manufacturing cycle and produce complex structural parts efficiently. This approach provides important theoretical guidance and reference for the lightweight design and manufacturing field of large-scale UAV load-bearing joint structures. The integration of these advanced techniques advances performance optimization and production efficiency in large-scale UAV load-bearing joint structures. Moreover, it promotes the innovation and development of aerospace manufacturing technology by enabling the creation of more efficient, lighter, and stronger components. Overall, the findings highlight the potential for significant advancements in UAV design and manufacturing, offering practical insights and methodologies applicable to similar engineering challenges in the aerospace industry. The research underscores the importance of adopting cutting-edge technologies such as SLM and topology optimization to achieve superior performance in aerospace applications.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164