<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

ViTAU:基于Vision transformer和面部動作單元的面癱識別與分析

ViTAU: Facial paralysis recognition and analysis based on vision transformer and facial action units

  • 摘要: 面部神經麻痹(Facial nerve paralysis,FNP),通常稱為貝爾氏麻痹或面癱,對患者的日常生活和心理健康產生顯著影響,面癱的及時識別和診斷對于患者的早期治療和康復至關重要. 隨著深度學習和計算機視覺技術的快速發展,面癱的自動識別變得可行,為診斷提供了一種更準確和客觀的方式. 目前的研究主要集中關注面部的整體變化,而忽略了面部細節的重要性. 面部不同部位對識別結果的影響力并不相同,這些研究尚未對面部各個區域進行細致區分和分析. 本項研究引入結合Vision transformer(ViT)模型和動作單元(Action unit,AU)區域檢測網絡的創新性方法用于面癱的自動識別及區域分析. ViT模型通過自注意力機制精準識別是否面癱,同時,基于AU的策略從StyleGAN2模型提取的特征圖中,利用金字塔卷積神經網絡分析受影響區域. 這一綜合方法在YouTube Facial Palsy(YFP)和經過擴展的Cohn Kanade(CK+)數據集上的實驗中分別達到99.4%的面癱識別準確率和81.36%的面癱區域識別準確率. 通過與最新方法的對比,實驗結果展示了所提的自動面癱識別方法的有效性.

     

    Abstract: Facial nerve paralysis (FNP), commonly known as Bell’s palsy or facial paralysis, significantly affects patients’ daily lives and mental well-being. Timely identification and diagnosis are crucial for early treatment and rehabilitation. With the rapid advancement of deep learning and computer vision technologies, automatic recognition of facial paralysis has become feasible, offering a more accurate and objective diagnostic approach. Current research primarily focuses on broad facial changes and often neglects finer facial details, which leads to insufficient analysis of how different areas affect recognition results. This study proposes an innovative method that combines the vision transformer (ViT) model with an action unit (AU) facial region detection network to automatically recognize and analyze facial paralysis. Initially, the ViT model utilizes its self-attention mechanism to accurately determine the presence of facial paralysis. Subsequently, we analyzed the AU data to assess the activity of facial muscles, allowing for a deeper evaluation of the affected areas. The self-attention mechanism in the transformer architecture captures the global contextual information required to recognize facial paralysis. To accurately determine the specific affected regions, we use the pixel2style2pixel (pSp) encoder and the StyleGAN2 generator to encode and decode images and extract feature maps that represent facial characteristics. These maps are then processed through a pyramid convolutional neural network interpreter to generate heatmaps. By optimizing the mean squared error between the predicted and actual heatmaps, we can effectively identify the affected paralysis areas. Our proposed method integrates ViT with facial AUs, designing a ViT-based facial paralysis recognition network that enhances the extraction of local area features through its self-attention mechanism, thereby enabling precise recognition of facial paralysis. Additionally, by incorporating facial AU data, we conducted detailed regional analyses for patients identified with facial paralysis. Experimental results demonstrate the efficacy of our approach, achieving a recognition accuracy of 99.4% for facial paralysis and 81.36% for detecting affected regions on the YouTube Facial Palsy (YFP) and extended Cohn Kanade (CK+) datasets. These results not only highlight the effectiveness of our automatic recognition method compared to the latest techniques but also validate its potential for clinical applications. Furthermore, to facilitate the observation of affected regions, we developed a visualization method that intuitively displays the impacted areas, thereby aiding patients and healthcare professionals in understanding the condition and enhancing communication regarding treatment and rehabilitation strategies. In conclusion, the proposed method illustrates the power of combining advanced deep learning techniques with a detailed analysis of facial AUs to improve the automatic recognition of facial paralysis. By addressing previous research limitations, the proposed method provides a more nuanced understanding of how specific facial areas are affected, leading to improved diagnosis, treatment, and patient care. This innovative approach not only enhances the accuracy of facial paralysis detection but also contributes to facial medical imaging.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164