<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

Mg/Al雙金屬固相復合界面特征與性能

Characteristics and properties of Mg/Al bimetallic solid-phase composite interfaces

  • 摘要: Mg/Al雙金屬層狀復合材料因兼具鎂合金低密度和鋁合金耐腐蝕的特性,在輕量化與高性能成形制造方面應用需求巨大. 而金屬材料接觸面在固態下直接結合的雙金屬固相復合工藝,因避免了液–液復合或液–固復合中氧化、夾雜等缺陷對復合材料性能的影響,在雙金屬復合技術中具有顯著的優勢. 為闡明Mg/Al雙金屬固相復合過程中熱變形條件對復合界面特征和性能的影響規律,開展了變形溫度300~430 ℃、應變率5×10?3~1 s?1和變形量20%~40%條件下的熱壓縮復合實驗,采用掃描電鏡、能譜儀和維氏硬度儀獲得了復合界面的微觀形貌、元素和硬度的分布規律. 結果表明:隨著應變率降低、變形量增加和變形溫度升高,元素擴散時間增長、擴散能力增強,過渡區總厚度增加,形成了Mg17Al12相和Al3Mg2相組成的高硬度金屬間化合物層. 在此基礎上,通過建立金屬間化合物層的厚度演化模型,結合雙金屬冶金結合的臨界變形量計算公式,構建了Mg/Al雙金屬復合界面特征隨熱變形條件演化圖. 計算結果說明:較高溫度(>400 ℃)和較高應變率(~1 s?1)的變形條件在保證Mg/Al雙金屬冶金結合同時,可以抑制金屬間化合物層的出現和長大,從而有助于良好復合界面的實現.

     

    Abstract: Mg/Al bimetallic layered composites are in great demand for lightweight and high-performance manufacturing applications owing to the advantageous combination of the low density of magnesium alloys and the corrosion resistance of aluminum alloys. The bimetallic solid-phase composite fabrication process, in which the contact surfaces of metal materials are directly combined in the solid state, offers significant advantages in bimetallic composite technology. This process avoids the detrimental effects of oxidation, inclusions, and other defects that can impact the performance of composite materials formed through liquid–liquid or liquid–solid composite processes. Temperature, strain rate, and strain are critical parameters in many joining and forming processes of Al/Mg alloy hybrid structures/components, but the relationship between these parameters and interfacial bonding strength remains to be quantified. In this study, hot compression composite experiments were conducted to elucidate the influence of heat deformation conditions on the performance of the Mg/Al bimetallic composite interface. The experiments were performed at deformation temperatures of 300–430 ℃, strain rates of 5×10?3–1 s?1, and strains of 20%–40%. A scanning electron microscope with energy dispersive spectroscopy (SEM–EDS) and a Vickers hardness tester were used to analyze the microstructure, element distribution, and hardness distribution of the composite interface. The results showed that the bonding interface was not effectively formed owing to the presence of micro-gaps at a strain of 0.2 or a temperature of 300 ℃. Furthermore, the strain rate mainly affected the shape of the bonding interface, indicating that strain and temperature were the critical factors influencing metallurgical bonding in the bimetallic compounding process. As the strain rate decreased and deformation and temperature increased, the element diffusion time increased, and diffusion ability improved. This resulted in a thicker transition region and the formation of high-hardness intermetallic compounds (IMCs) composed of Mg17Al12 and Al3Mg2 phases. According to this, an evolution model of the intermetallic compound layer thickness in the transition region, parameterized by the elemental diffusion activation energy, was established. Through the incorporation of the critical strain required for the bimetal to achieve metallurgical bonding, a diagram illustrating the evolution of the Mg/Al bimetallic composite interface under various heat deformation conditions was constructed. Metallurgical bonding was achieved through the complete diffusion of metal atoms at the interface; however, the hardness and brittleness of the resulting intermetallic compound layer were not conducive to the quality of the Mg/Al bimetallic interface. Therefore, considering metallurgical bonding and the characteristics of the intermetallic compound layer is essential. Controlling the extent of elemental diffusion allowed for minimizing the thickness of the intermetallic compound layer while ensuring effective interfacial metallurgical bonding. The calculation results indicated that deformation conditions of higher temperature (>400 ℃) and higher strain rate (~1 s?1) could inhibit the formation and growth of the intermetallic compound layer while ensuring metallurgical bonding, thus contributing to a high-quality composite interface. The combination of high strain rates and high temperatures enabled the formation of a fully bonded interface with a minimal intermetallic compound layer thickness, maximizing bonding strength. The research findings and developed models can guide the optimization of parameters associated with the Mg/Al bimetallic joining or forming process via plastic deformation.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164