<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

生物質基硬碳儲鈉負極材料研究進展

Research progress on biomass-based hard-carbon anode materials for sodium storage

  • 摘要: 鈉離子電池因其具有優異的低溫性能、成本優勢以及較高的安全性,有望逐漸成為鋰離子電池在低速兩輪車和大規模儲能領域的補充者,開發低成本、高可逆容量和優異循環穩定性的鈉離子電池負極材料成為行業難點,生物質基硬碳因其原料來源豐富、成本低廉、更易獲得、碳產率高、環境友好且含有多種元素等優勢而備受關注,其低廉的價格和獨特的微觀結構在眾多鈉離子電池負極材料中展現出明顯的優勢和巨大的商業潛力. 為了尋找和開發性能優異的生物質基硬碳材料,本文首先對鈉離子在硬碳表面活性位點的吸附行為和進入石墨片層的過程順序進行了分析,討論了有爭議的四種鈉離子存儲機制. 深入分析了鈉離子在硬碳中的儲存機理,并基于此進一步討論了不同生物質基前驅體硬碳的差異,并通過硬碳負極的微觀結構提出鈉離子電池負極的優化策略,對鈉離子電池的發展具有一定的指導意義.

     

    Abstract: Sodium-ion batteries are expected to gradually replace lithium-ion batteries in large-scale energy storage and two-wheeled electric vehicles because of their excellent low-temperature performance, cost advantages, and high safety. The development of sodium-ion battery anode materials with low cost, high reversible capacity, and excellent cycling stability is challenging for the industry. Because sodium ions are larger than lithium ions, graphite materials with long-range ordered structures suitable for lithium-ion battery anodes cannot be applied to sodium-ion batteries. Instead, the graphite domains of hard carbon materials are short and chaotically aligned, exhibiting a short-range ordered structure with local graphite zones inside the carbon layer. Moreover, the layer spacing of hard carbon is larger than that of graphite, which is conducive to the storage of sodium ions. Hard carbon is easily accessible and environmentally friendly, with a high carbon yield. Biomass-based hard carbon has attracted considerable attention because of its abundant raw material sources, low cost, easy accessibility, high carbon yield, environmental friendliness, and the presence of various elements. Its unique microstructure exhibits notable advantages and great commercial potential among several anode materials for sodium-ion batteries. The storage mechanism of sodium ions in hard carbon is controversial. Herein, we first analyze the adsorption behavior of sodium ions at the active sites on the hard carbon surface and the sequential process of their entry into the graphite scale layer. Moreover, we review four controversial sodium-ion storage mechanisms. Furthermore, we explore the storage mechanism of sodium ions in hard carbon and the differences between various biomass-based precursors. The content of each component and microstructure of different precursors vary, and several differences exist between nutshells, woody plants, and herbs. Their internal structural characteristics and different component contents play a key role in the performance of hard carbon. We enumerate the structural and component differences among various biomass-based precursors and summarize the distinctions in sodium-ion storage properties among different precursor hard carbons. To enhance the sodium storage performance of biomass-based hard carbon, an optimization strategy is proposed for sodium-ion battery anodes. This strategy involves manipulating the microstructure of the hard carbon anode, including adjusting the carbon layer spacing, pore structure, and specific surface area. In addition, the doping of elements, introduction of functional groups, and optimization of the electrolyte can improve the sodium storage performance of hard carbon. These insights can provide significant guidance for developing sodium-ion batteries.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164