<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

機器學習在鎂合金應用中的研究進展

Applications of machine learning on magnesium alloys

  • 摘要: 在材料基因工程的背景下,基于數據驅動的機器學習技術作為一種強大的新型工具在鎂合金的研究領域得到了廣泛的關注. 機器學習可以繞過幾乎任何復雜的實驗過程,只要確定描述符和目標屬性之間的聯系,就能以較低的成本,快捷地預測材料的性能. 傳統的實驗試錯法和基于密度泛函理論的方法由于時間成本高、效率低,難以滿足材料科學的不斷發展需求. 本文綜述了機器學習在鎂合金應用中的研究進展. 首先簡述了機器學習的基本流程和各種方法,主要包括數據集收集、數據預處理、模型構建和性能評估,并對機器學習算法的分類進行了總結. 重點介紹了機器學習在鎂合金加工工藝、顯微組織、力學性能、耐蝕性能、儲氫性能、固有屬性(強化機制、各向異性等)和逆向設計等諸多方面應用的研究成就. 機器學習模型不僅加速了新型高性能鎂合金的設計過程,而且推動了鎂合金塑性變形機理的深入研究. 最后,分析了機器學習在鎂合金研究應用中一些亟待解決的問題,并據此提出了機器學習在鎂合金應用方面未來的研究方向和發展趨勢.

     

    Abstract: In materials genetic engineering, data-driven machine learning techniques have garnered significant attention as a powerful new tool in the field of magnesium alloys. Traditional empirical trial-and-error methods and those based on density functional theory have struggled to keep pace with the continuous advancements in material science needs owing to high time costs and low efficiency. By relying on statistical methods instead of solving physical equations, machine learning can quickly predict material properties at a low cost, provided the connection between descriptors and target properties is identified. This capability can streamline the experimental process. Magnesium and its alloys show tremendous potential in aerospace, automotive, and other fields owing to their low density and high specific strength. However, their industrialization has been limited by several challenges, including the varied effects of different alloying elements, preparation and processing defects, deformation difficulties, and the common trade-off between strength and ductility. Machine learning can accelerate the discovery of novel magnesium alloys or processing parameters, and explore the relationships between their physicochemical characteristics and target properties. This paper comprehensively and systematically reviews the research progress of machine learning applications in magnesium alloys. It introduces the basic processes and various methods of machine learning, including data set collection, data preprocessing, model building, and performance evaluation. The classification of machine learning algorithms is summarized briefly. The paper then focuses on the research achievements of machine learning applied in many aspects, such as machining processes, microstructure, mechanical properties, corrosion resistance, hydrogen storage properties, intrinsic properties (reinforcement mechanism, anisotropy, etc.) and inverse design. Factors such as alloy compositions, test temperature and time, second phase, and Schmid factor can be considered as features and input into machine learning models for training. These models not only accelerate the design of novel high-performance magnesium alloys but also enhance the understanding of magnesium alloy mechanisms. Additionally, the paper analyzes some urgent issues in the research and application of machine learning in magnesium alloys. These include insufficient prediction of the chemical and physical properties of magnesium alloys, the nascent stage of predicting the design and service performance of magnesium alloy components, and the lack of high-quality data sets. Finally, the paper proposes future research directions and development trends in the application of machine learning in magnesium alloys.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164