<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

星球車自主路徑規劃方法

Review of autonomous path planning for planetary rovers

  • 摘要: 自主路徑規劃是星球車執行地外星球探測任務的一項核心技術,有助于星球車安全、高效地運動到任務點. 然而,由于地外星球環境的特殊性、星球車與地面控制站之間的通信時延和通信帶寬限制,星球車的自主路徑規劃與地面移動機器人的相應技術相比面臨更大的挑戰性,比如光照有限、地形未知且難以預測、環境特征單一和輪地交互難以精確建模等. 因此,在存在不完全的環境信息和不確定的位置信息的情況下,如何為星球車生成一條安全、高效、合理的可通行路徑是當前的研究熱點. 從研究進展和工程應用兩個角度分析梳理星球車感知地圖構建和自主路徑規劃等關鍵技術的進展. 首先,總結了基于雙目視覺的感知地圖構建方法的研究進展,這種方法根據雙目視覺信息獲取視差圖,從而構建星球表面數字高程地圖模型. 在獲取視差圖時通常采用立體匹配算法,對基于區域的匹配算法和基于特征的匹配算法兩類主流方法進行了分析. 其次,將現有的星球車自主路徑規劃方法總結為基于代價評估的路徑規劃方法與基于機器學習的路徑規劃方法兩類,重點概括總結了基于備選弧的自主路徑規劃方法原理及其在已發射星球車路徑規劃中的迭代應用情況. 分類分析了基于A*啟發式搜尋算法、快速隨機探索樹算法和快速行進法的自主路徑規劃方法在星球車上的應用前景. 將機器學習在星球車自主路徑規劃中的應用分為端到端路徑規劃方法與基于機器學習的輔助路徑規劃方法兩類進行總結梳理. 最后,基于對星球車自主路徑規劃的關鍵技術分析,從增強星球車感知能力、改進備選弧、減小星球車滑移、結合多種路徑規劃方法以及加強機器學習的應用五個方面對未來星球車自主路徑規劃方法的研究方向進行了探討和展望.

     

    Abstract: Autonomous path planning represents a cornerstone technology for enabling planetary rovers to carry out exploration missions on extraterrestrial planets. This technology facilitates planetary rovers in navigating safely and efficiently toward their mission goal. However, the special conditions of extraterrestrial planetary environments pose significant challenges for autonomous path planning compared with those faced by ground-based mobile robots. These challenges include communication delays and bandwidth limitations between the planetary rover and the ground control station, limited light, unknown and unpredictable terrain, distinct environmental features, and the difficulty of accurately modeling interactions between the rover wheels and the ground. Therefore, addressing how to generate a safe, efficient, and reasonable traversable path for a planetary rover under conditions of incomplete environmental data and uncertain positioning is a focal point of current research. This paper reviews advancements in perception map construction and autonomous path planning for planetary rovers, examining both research progress and engineering applications. First, this paper summarizes advances in perception map construction methods that rely on binocular vision. This method uses stereo vision to generate parallax maps, which in turn help construct a digital elevation model of the planet’s surface. Stereo matching algorithms are typically used to acquire parallax maps. The discussion includes an analysis of two main types of methods: region-based matching algorithms and feature-based matching algorithms. Second, the paper classifies existing autonomous path-planning methods for planetary rovers into two categories: those based on cost evaluation and those leveraging machine learning. As a typical representative of cost-evaluation–based path planning methods, the optional arc-based autonomous path planning method is spotlighted for its algorithmic principles and iterative applications in ongoing planetary rover missions. Furthermore, the potential of A* heuristic search algorithm, rapidly-exploring random tree star (RRT*) algorithm, and fast marching method(FMM) algorithms for enhancing planetary rover path planning is explored in a categorical manner. The application of machine learning in autonomous path planning for planetary rovers is also reviewed. Such methods are classified into two groups: end-to-end path planning methods and auxiliary approaches leveraging machine learning. Ultimately, based on the above analysis of the key technologies of planetary rover autonomous path planning, the paper identifies and discusses future research directions for improving autonomous path planning methods for planetary rovers. These include enhancing perception capabilities, improving optional arc paths, reducing slippage, integrating multiple path planning methods, and strengthening the use of machine learning.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164