<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于模型預測的膝關節置換手術機器人柔順控制

Model predictive-based compliance control for knee arthroplasty surgical robots

  • 摘要: 針對半主動型膝關節置換手術機器人的柔順跟隨醫生意圖運動和手術安全范圍約束問題,提出了一種模型預測導納控制算法. 首先,為了提高算法運行效率,使用斯特林插值方法對機械臂動力學模型進行線性化,并作為預測模型,該方法計算簡單且求解精度高;其次,基于導納模型力柔順控制機理識別操作醫生的力意圖生成機械臂期望運動軌跡;然后,設計虛擬狀態,提高模型預測控制算法的顯式處理約束能力,利用模型預測控制的滾動優化和反饋校正特性提高控制魯棒性;最后,結合成機械臂模型預測導納控制器. 設計三環PID(Proportional integral derivative)控制對照試驗,驗證了模型預測控制算法的軌跡跟蹤性能更好,可以更好的實現期望的導納動態,從而得到更優的柔順效果. 在此基礎上,進一步驗證模型預測導納控制器在具有強耦合性、復雜系統參數結構特性的機械臂上的主動約束效果. 結果表明模型預測導納控制算法能實現比傳統三環PID控制更好的柔順性,且具備滿足膝關節置換手術需求的安全性. 本文有望促進半主動手術機器人的實際應用.

     

    Abstract: In response to the compliant tracking of surgical intent and adherence to safety range constraints in semi-active knee arthroplasty robots, a model predictive impedance control (MPIC) algorithm is proposed. First, to enhance this algorithm’s operational efficiency, the Stirling interpolation method is employed to linearize the dynamics model of the robotic arm as the predictive model. This method offers computational simplicity and high-precision solving accuracy. Second, based on the impedance model, the force-compliant control mechanism is used to identify the surgeon’s force intention, thereby generating the desired motion trajectory for the robotic arm. To facilitate programming implementation, the impedance model is discretized. Third, leveraging the rolling optimization and feedback correction properties of model predictive control, a virtual state enhancement is designed to improve the explicit constraint handling capability of the MPIC algorithm. This enhancement addresses the infeasibility issues encountered by traditional model predictive control near state constraint boundaries in practical applications. Transforming the model predictive problem into a quadratic programming problem reduces the difficulty of solving the model predictive problem and increases problem-solving speed. Finally, MPIC is integrated as the lower-level position-tracking controller for the robotic arm, with the impedance model serving as the upper-level task planning controller, thus forming the MPIC controller. Comparative experiments with three-loop PID (Proportional integral derivative) control are conducted on the ROKAE seven-axis collaborative robot experimental platform, confirming that the MPIC algorithm achieves better trajectory tracking accuracy and response speed, effectively realizing the desired impedance dynamics and yielding superior compliance. Additionally, further validation is conducted by installing a six-axis force sensor between the end-effector and the wrist of the robotic arm to measure human–robot interaction forces, confirming that the MPIC algorithm exhibits better compliance than traditional position-tracking control methods. Drag experiments are designed to verify the active constraint effect of MPIC on mechanically coupled robotic arms with complex system parameter structures, demonstrating that the control algorithm can actively constrain the motion of the robotic arm when it is manually manipulated to exceed the set state constraint range. Overall, the MPIC algorithm achieves better compliance and meets the safety requirements for knee arthroplasty surgery compared to traditional three-loop PID control methods. This advancement holds promise for further development and adoption of semi-active surgical robots, reducing the complexity of using surgical robots as surgeons and accelerating the widespread adoption of domestically produced surgical robots in hospitals. This paper should promote the practical application of semi-active surgical robots.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164