<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

CO2熔鹽捕集與電解單質碳過程調節

Regulation of CO2 molten salt capture and electrolysis to elemental carbon

  • 摘要: CO2熔鹽捕集與電解制備單質碳材料由于具有良好的選擇性,被認為是一種極有前景的碳捕集利用與封存(CCUS)技術. 然而,目前關于CO2在熔鹽體系下的動力學捕集機理研究尚顯不足,并且電解過程中電耗較高,生產成本偏大,因此CO2高效捕集與低電耗電解是關鍵. 本文計算了CO2熔鹽捕集轉換碳酸鹽熱力學和碳酸鹽電解理論電壓與電耗,通過在線氣體質譜儀、碳硫分析儀等研究了典型CaCl2基熔鹽中CO2捕集動力學規律. 通過恒電壓電解、掃描電子顯微鏡(SEM)、拉曼光譜(Raman)等,在典型三元Na2CO3–K2CO3–Li2CO3熔鹽和三元CaCl2–NaCl–CaO熔鹽中考察了溫度和電壓對CO2電解制備單質碳材料電解過程、電耗和產物結構的影響規律. 結果表明,相比于堿金屬氧化物,CaO是較佳的CO2捕集劑,捕集轉化獲得的CaCO3具有最低的理論分解電壓和電耗;在典型CaCl2–3.0%CaO(質量分數)熔鹽中,CO2的捕集容量為0.016 gCO2·g?1;相比于Na2CO3–K2CO3–Li2CO3熔鹽,CaCl2–NaCl–CaO熔鹽捕集CO2具有更低的電解電壓和電耗,750 ℃和1.5 V最佳條件下,電解單質碳材料電流效率達到95.3%,電解電耗最低僅為14.1 kW·h·kg?1. 本研究不僅為尋找性能優異、價格低廉、環境友好的CO2熔鹽捕集材料提供了基礎,也為實際電解優化工藝指標提供理論依據.

     

    Abstract: High-temperature molten salt capture and electrolysis technology of CO2 for the effective preparation of elemental carbon materials are considered to be an exceedinglyare gaining traction as promising carbon capture utilization and storage technology. The reason is their excellent selectivity and ease of operation, making them suitable for the effective preparation of elemental carbon materials from CO2. Nonetheless, the current research on the kinetic mechanism of CO2 capture in high-temperature molten salt systems is inadequate. Furthermore, the energy consumption and production costs associated with the process of preparing elemental carbon materials through CO2 molten salt electrolysis are relatively high. Therefore, achieving efficient CO2 capture in high-temperature molten salts and low-energy consumption electrolysis is very crucial. This paper delves into the thermodynamics of CO2 capture by various alkali metals/alkaline earth metal oxides. It also compares the theoretical decomposition voltage and energy consumption of various alkali metals/alkaline earth metal carbonates. The capture behavior of CO2 in typical binary chloride molten salts is also examined. The study further explores the thermodynamics of CO2 capture in molten salts to carbonates and calculates the theoretical voltage and power consumption during carbonate electrolysis in a high-temperature molten salt system. The kinetics of CO2 capture in typical CaCl2-based molten salts are examined by advanced technologies such as online gas mass spectrometry, carbon–sulfur analyzer, X-ray diffraction, and energy spectroscopy. The effects of temperature and voltage on the electrolysis process, electrolytic energy consumption, and product structure of elemental carbon materials prepared by CO2 electrolysis are investigated in typical ternary Na2CO3–K2CO3–Li2CO3 molten salts and ternary CaCl2–NaCl–CaO molten salts using scanning electron microscopy (SEM), Raman spectroscopy, and constant voltage electrolysis. The results indicate that CaO outperforms alkali metal oxide as a CO2 capture agent, and CaCO3 obtained by energy and conversion exhibits the lowest theoretical decomposition voltage and electrolytic energy consumption. In a typical CaCl2–3.0% CaO (mass fraction) molten salt, the CO2 capture capacity is 0.016 gCO2·g?1. Compared with the Na2CO3–K2CO3–Li2CO3 molten salt, the CaCl2–NaCl–CaO molten salt has a lower electrolysis voltage and energy consumption. Moreover, the current efficiency of the electrolytic elemental carbon material reaches up to 95.3%, with the minimum electrolytic energy consumption being only 14.1 kW·h·kg?1 under the optimal conditions of 750 ℃ and 1.5 V. Therefore, this study provides a foundation for exploring CO2 molten salt capture materials that combine excellent performance, low cost, and environmental friendliness. It also offers theoretical and data support for optimizing the process and reducing the cost of the actual electrolysis.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164