<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

刃寬對硬巖掘進影響的仿真及試驗研究

Research on disc cutter excavation characteristics for different blade width based on numerical simulations and experiments

  • 摘要: 滾刀在硬巖掘進中極易發生崩刃、偏磨等異常失效,研究硬巖掘進條件下刃型參數對滾刀破巖載荷和破巖效率的影響十分重要. 本文采用滾刀破巖試驗和仿真分析相結合的方法,從載荷曲線、破巖體積、破巖比能等方面分析了刃寬對滾刀破巖的影響. 基于雙線性本構模型及Benzeggagh–Kenane損傷斷裂準則建立了巖石材料的內聚力本構模型,通過單軸抗壓試驗及巴西劈裂試驗對內聚力本構模型的微觀參數進行了校準,并進一步建立了滾刀破巖的內聚力仿真模型. 結果表明:內聚力本構模型可以準確的模擬破巖過程中巖石裂紋的萌生和擴展過程. 依據裂紋的萌生和擴展情況,滾刀破巖過程主要分為三個階段:彈性階段、裂紋萌生–擴展階段及巖石破壞卸載階段. 滾刀破巖載荷和破巖體積隨著貫入度、刀間距和刃寬的增加而增加;破巖比能隨刃寬的增加呈先減小后增大的趨勢. 對于所選取的硬巖,采用13 mm刃寬滾刀破巖時比能最小,破巖效率最高;7 mm刃寬滾刀破巖時無法形成貫通巖片,相鄰滾刀之間仍存在巖脊,破巖效率較低.

     

    Abstract: This study addresses the abnormal failures, such as blade fractures and wear, encountered by disc cutters when excavating hard rock with high uniaxial compressive strength. It is crucial to understand how disc cutter geometric parameters affect excavation efficiency and load, especially when performing disc cutter excavation on hard rock. We propose a rock modeling approach that combines a cohesive model with a solid model, leveraging the characteristics of a cohesive element. The model follows the double linear constituted evolution criterion and the Benzeggagh–Kenane damage failure criteria. Calibration of the cohesive model’s microscopic parameters was based on the uniaxial compressive strength test and Brazilian splitting tests, using stress reduction rate curves and crack morphology from these experiments. We developed a simulation model for rock breaking during disc cutter excavation and validated it through linear cutting tests. The study examines linear cutting test results and the simulation of rock breaking during disc cutter excavation results. This study examines how disc cutter width affects rock breaking by considering load curves, rock breaking volume, and specific energy. Results indicate that the cohesive constitutive model effectively simulates rock crack initiation and propagation. The rock breaking process comprises three stages: elastic, crack initiation–propagation, and rock unloading. The crack initiation–propagation stage is critical for rock breaking efficiency. Results show that disc cutter load and rock break volume increase with increasing penetration, blade width, and cutter spacing. Specific energy initially decreases with blade width increase and then increases. Optimal excavation efficiency occurs with a blade width of 13 mm and a spacing of 80 mm, whereas a 7-mm blade fails to achieve complete rock fragmentation, resulting in low efficiency.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164