<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于時空關系的高速公路交通流量預測

Highway traffic flow forecasting based on spatiotemporal relationship

  • 摘要: 高速公路交通流量預測對于交通擁堵預警、分流誘導和智慧高速公路建設具有重要意義. 交通流具有復雜的時空依賴性,各個交通節點之間的空間關系隨時間動態變化,時空關系的融合也缺乏高效的手段,因此對交通流量進行準確的預測具有挑戰性. 對此,提出一種基于動態圖卷積網絡與時空特征提取模塊的高速公路交通流量預測方法. 首先,通過動態圖調節模塊,提取交通流量序列的空間關系,根據提取到的空間特征,計算不同路網節點的道路相似性,并調整交通路網圖結構;其次,通過時空特征提取模塊,利用更新后的空間結構,結合時序處理方法,對交通流量數據的時空依賴關系進行建模. 為檢驗模型效果,在美國加州高速公路性能測量系統 (Performance measurement system, PeMS)所制作的數據集PeMS03、PeMS04、PeMS08和福州京臺線高速公路數據集中進行實驗對比,平均絕對誤差分別為15.6、19.7、16.8和5.21,結果表明,本文提出的方法在高速公路交通流量預測中具有較好的表現.

     

    Abstract: With the continuous advancement in socioeconomic development and transportation infrastructure, the daily traffic volume on highways has been steadily increasing, resulting in the growing frequency of traffic congestion incidents. Thus, the accurate prediction of highway traffic flow is of great significance for implementing traffic congestion warnings, guiding traffic diversion, and developing the concept of intelligent highways. Traffic flow exhibits intricate spatial and temporal dependencies: in the spatial dimension, the relationships between various traffic nodes are not fixed, changing dynamically over time; in the temporal dimension, multiple temporal patterns of traffic flow sequences are entangled with each other. In addition, an efficient method for fusing spatiotemporal relationships is lacking, making the accurate prediction of traffic flow a challenging endeavor. In this regard, a methodology for forecasting highway traffic flow is proposed based on dynamic graph convolutional networks and spatiotemporal feature extraction modules. Given the challenge posed by the static nature of predefined graph structures in capturing dynamic spatial relationships among traffic nodes, a dynamic graph adjustment module is introduced. Initially, the spatial features of each traffic node are extracted. Subsequently, utilizing these extracted spatial features, spatial similarity scores between traffic nodes are computed. Based on these scores, a traffic network graph structure is adapted: connections between nodes with high similarity scores, previously unlinked, are established with a certain probability, while connections between nodes with low similarity scores, previously linked, are severed with a certain probability. Furthermore, by employing the spatiotemporal feature extraction module and leveraging the updated graph structure, spatial relationships are extracted through graph convolution. This is complemented by integrating a patch concept from temporal processing methodologies. Herein, a one-dimensional traffic flow sequence is decomposed and transformed into two-dimensional data. Through convolutional operations, temporal features within and between periods are simultaneously extracted before reverting the data back to its original dimensionality. This comprehensive approach enables the modeling of spatiotemporal dependencies within the traffic flow data. To validate the effectiveness of the proposed model, experiments were conducted on four highway traffic datasets, contrasting its performance with baseline models. The proposed model achieved the mean absolute error (MAE) values of 15.6, 19.7, 16.8, and 5.21 on the PeMS03, PeMS04, PeMS08, and Fuzhou Jingtai highway datasets, respectively. These results show that the proposed method reaches an advanced level in traffic flow forecasting. Lastly, to assess the efficacy of individual model components, ablative experiments were conducted, and their results were compared. These experiments validate the effectiveness of each component, thereby affirming the efficacy of the proposed model in highway traffic flow forecasting.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164