<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

有壓熱悶渣微粉對環氧涂料的性能影響

Effect of pressed-heat and stuffy slag powder on the properties of epoxy coating

  • 摘要: 以有壓熱悶渣為研究對象,采用超細立式粉磨機處理有壓熱悶渣形成微粉,利用有壓熱悶渣微粉替代傳統防腐填料與環氧樹脂、二甲苯、正丁醇及聚酰胺形成有壓熱悶渣/環氧復合防腐涂料. 根據《色漆和清漆擺桿阻尼試驗》(GB/T 1730—2007)、《漆膜劃圈試驗》(GB/T 1720—2020)、《色漆和清漆耐磨性的測定 旋轉橡膠砂輪法》(GB/T 1768—2006)、《漆膜、膩子膜柔韌性測定法》(GB/T 1731—2020)測定涂層的硬度、附著力、耐磨性、柔韌性,《色漆和清漆 耐中性鹽霧性能》(GB/T 1771—2007)與《漆膜吸水率測定法》(HG/T 3344—2012)測定涂層的耐鹽霧性能及吸水率. 采用接觸角測量儀、精密阻抗測試儀和電化學工作站測定涂層的接觸角、阻抗模量和腐蝕電位. 采用掃描電子顯微鏡、X射線熒光光譜儀、X射線衍射儀和激光粒度分析儀測試微觀形貌、化學成分、礦物組成和粒度分布. 研究有壓熱悶渣微粉對環氧復合防腐涂料涂層力學性能、防腐性能的影響,及其作用機理. 結果表明有壓熱悶渣的主要礦物成分C3S、C2S、Ca(OH)2、C2F、RO相和f-CaO等,其具有硅酸鹽特性可以提高耐久性. 利用超細立式粉磨機對有壓熱悶渣進行加工,有利于f-CaO礦化,減小顆粒粒徑、增大比表面積. 當有壓熱悶渣微粉的粒徑均勻度為2.240,其添加量為5%時有壓熱悶渣/環氧復合防腐涂料涂層的性能最佳,即擺桿硬度測試結果為115.75 s、附著力為3級、磨損量最小、柔韌性為4 mm、阻抗模量為106.1 Ω·cm2、腐蝕電位E為0.143 V. 有壓熱悶渣微粉作為一種剛性粒子,將其加入環氧涂料體系中,一方面可以改善涂層的硬度、耐摩擦、力學等性能,另一方面合理的粒徑均勻度可以增強涂層的密實度,提升防腐性能. 開啟有壓熱悶渣在非建材領域高值化利用的新途徑,實現鋼鐵行業“以廢增效”、涂料行業“以廢降本”的目的.

     

    Abstract: The study focused on the utilization of heat-pressed and stuffy slag, processed into an ultrafine vertical grinding mill. This pressed-heat and stuffy slag powder replaced traditional anticorrosion fillers, such as epoxy resin, xylene, butanol, and polyamide, therefore forming a composite anticorrosion coating. Tests were conducted to assess the hardness, adhesion, abrasion resistance, and flexibility of these coatings according to various standards: GB/T 1730—2007 (paints and varnishes–pendulum damping test), GB/T 1720—2020 (circle-drawing test of coating films), GB/T 1768—2006 (paints and varnishes–determination of resistance to abrasion-rotating abrasive rubber wheel method), and GB/T 1731—2020 (determination of flexibility of coating and putty films), respectively. Additionally, the salt mist resistance was tested in conformance with GB/T 1771—2007 (paints and varnishes–determination of resistance to neutral salt spray) and water absorption was evaluated consistent with HG/T 3344—2012 (determination of water absorption of paint film) for coatings. The contact angle, impedance modulus, and corrosion potential of the coatings were also determined using a contact angle measuring instrument, a precision impedance tester, and an electrochemical workstation. Moreover, the micromorphology, chemical composition, mineral composition, and particle size distribution were evaluated using electron microscopy, X-ray spectroscopy, X-ray diffraction, and laser particle size analysis, respectively. The research analyzed the impact of pressed-heat and stuffy slag powder on the mechanical properties and anticorrosive properties of the epoxy composite anticorrosion coatings. It found that the pressed-heat and stuffy slag consisted of C3S, C2S, Ca(OH)2, C2F, RO phase, and f-CaO possessed properties similar to silicate, thereby improving durability. The processing method using an ultrafine vertical grinding mill facilitated the mineralization of f-CaO, reducing particle size and increasing specific surface area. The study concluded that the optimal performance of heat-pressed and stuffy slag powder/epoxy composite anticorrosion coatings was achieved when the particle size uniformity was 2.240 and the addition rate was 5%. At this rate, the performance of the composite anticorrosion coating is the best, the average swing rod hardness test result is 115.75 s, adhesion reached level 3, wear was minimized, flexibility measured 4 mm, impedance modulus was 106.1 Ω·cm?2, and corrosion potential (E) was 0.143 V. In summary, heat-pressed and stuffy slag, a type of rigid particle, can improve the hardness, friction resistance, and mechanical properties of the epoxy coating system. A uniform particle size can enhance the denseness and anticorrosive properties of these coatings. This opens up new possibilities for the high-value utilization of pressed-heat and stuffy slag outside of building materials and fulfilling the dual purpose of “increasing efficiency with waste” in the steel industry and “reducing cost with waste” in the paint industry.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164