<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

低溫鋰離子電容器研究進展

Research progress in low-temperature lithium-ion capacitors

  • 摘要: 鋰離子電容器(LIC)采用了雙電層電容器(EDLC)正極和鋰離子電池(LIB)負極,因而兼具高能量密度、高功率密度和長循環壽命的優勢. LIC在儲能過程中正極表面發生電荷的可逆吸脫附,負極體相中存在Li+的反復嵌入/脫嵌,在低溫環境下由于電解液的黏度、電導率等物化性質發生很大改變,嚴重影響了LIC中離子的正常運輸和電荷轉移,導致無法在低溫工況下正常運轉,限制了其全天候、寬溫域的應用. 因此改善LIC的低溫性能成為現階段亟待解決的問題,受到了業界的廣泛關注. 眾多研究表明電極材料和電解液之間的相互作用直接決定LIC低溫電荷存儲的過程,是解決低溫環境下LIC能量密度和功率密度低的關鍵環節. 本文從電極材料和電解液兩個方面綜述了國內外LIC低溫性能的研究進展,概述了現階段低溫碳基材料的化學改性、表面修飾、離子嵌入以及新型電極材料的研發,并從電解液的鋰鹽、溶劑、添加劑三部分出發,介紹了低溫工況下電解液各組成部分對LIC性能的影響,對不同改進工藝進行了分類與總結,重點討論了新型低溫添加劑在LIC中的應用,最后總結了新一代低溫電解液的研究進展并對具有寬溫度工況的下一代LIC提供了初步展望.

     

    Abstract: Recently, lithium-ion capacitors (LICs) have developed rapidly and have been applied in many fields, such as power storage and new energy transportation. LICs utilize the cathode materials of electrical double-layer capacitors (EDLCs) and the anode materials of lithium-ion batteries (LIBs). This produces a unique energy storage mechanism different from those of LIBs and EDLCs, i.e., charge transfer and Li+ insertion and desorption. Consequently, LICs combine the advantages of LIBs and EDLCs with high energy density, high power density, and long cycle life. However, because of this unique energy storage protocol, LICs inherit the poor low-temperature performance of LIBs, severely limiting their widespread application. Sometimes, the electrolyte becomes more viscous or even solidifies, affecting normal ion transportation and charge transfer. An increase in impedance prevents the normal operation of LICs, severely limiting their all-weather applications. Improving the low-temperature performance of LICs has become an urgent issue and has received widespread attention from researchers. Electrodes and electrolytes are the main components of LICs, and numerous studies have shown that their relationship directly determines the energy storage process of LICs at low temperatures. Therefore, this article reviews the recent research progress on the design and fabrication of low-temperature LICs in terms of electrodes and electrolytes. First, the research on key electrode materials for high-performance low-temperature LICs is discussed, including chemical modification, surface modification, ion insertion, and the development of new electrode materials for rapid intercalation of traditional carbon-based materials. Second, the electrolyte system that matches the electrode material is critically reviewed. The fundamental reasons for the poor performance of LICs in low-temperature environments are comprehensively explained from the chemical properties, physical states, and reaction mechanisms, providing a sufficient theoretical basis for searching electrolyte systems with better low-temperature performance. Third, starting from the main components of the electrolyte–lithium salts, solvents, and additives, this article summarizes the past year’s progress on low-temperature electrolytes in LICs. Emphasis is placed on additives for LIC electrolytes, which, as the essence of the entire electrolyte system, are the most controllable factor throughout the electrolyte system and currently the most available factor for selection. They can reduce the viscosity of the electrolyte with minimal content and improve the low-temperature charging and discharging ability of LICs. Commonly used low-temperature additives such as fluoroethylene carbonate (FEC), vinylene carbonate (VC), ropylene sulfite (PS) and lithium difluorooxalate borate (LiODFB) demonstrate excellent low-temperature performance. Finally, the article summarizes the research progress of the new generation of low-temperature electrolytes and provides a tentative outlook toward next-generation LICs with a wide temperature range.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164