<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

無人集群系統深度強化學習控制研究進展

Deep reinforcement learning to control an unmanned swarm system

  • 摘要: 隨著無人集群在物流運輸、農業管理、軍事行動等場景的試驗和應用,其面臨的作業環境和任務內容日趨復雜,亟需設計效率更高、泛化能力更強、適應性更好的控制算法. 將人工智能引入到無人集群系統控制的研究中,能夠大幅提升現有無人集群的能力,完成復雜的作業任務. 深度強化學習具有深度學習和強化學習的優點,無人集群系統深度強化學習控制研究受到了國內外科研人員的廣泛關注,涌現出許多標志性成果. 本文將從原理、特點等方面闡述深度強化學習概念,深入分析深度強化學習的多種典型算法,并討論無人機集群的各類控制需求,進而介紹深度強化學習在無人機集群控制領域的典型研究成果,最后針對該領域研究成果的落地轉化總結了應用前景和面臨的挑戰.

     

    Abstract: Recently, testing and using micro-unmanned vehicles, such as unmanned aerial vehicles (UAVs), in scenarios such as supply transportation, agricultural management, and military operations have become more common. It is no longer sufficient to control a single UAV to accomplish all missions. With the increasing complexities associated with operating and task requirements, an unmanned swarm requires a series of algorithms with higher efficiency, greater generalization ability, and better adaptability than the earlier algorithms. A combination of unmanned swarms with artificial intelligence is becoming a common solution to manage the above requirements. Deep reinforcement learning (DRL) is a machine learning method that combines deep learning (DL) and reinforcement learning (RL); therefore, this method has the advantages of DL and RL. Using an RL method, an agent can learn from the environment by trial and error and make decisions that autonomously obtain high scores. However, when the given environment is complex, the decision function of the agent may be too difficult to implement and then the agent cannot make the correct decision. The DL method has strong fitting ability. A suitable deep neural network can simulate any linear or nonlinear function. If the DL method is used to simulate the decision function in RL, the hybrid method can solve the problem that an agent cannot solve and make a correct decision in a complex environment. The combination of an unmanned swarm and a DRL method has been widely studied. This paper introduces the concept of DRL from the perspective of principles and characteristics. This paper analyzes several typical DRL algorithms, discusses the various control requirements of a UAV swarm, and then focuses on the achievements of combining DRL and a UAV swarm control. Finally, this paper presents viewpoints on the application prospects and challenges related to landing and transformation in the combination field. The concept of an unmanned swarm originated from the study of the behavior of biological groups. Several species of bees, ants, birds, fish, and other creatures exhibit complex group behaviors. These clusters comprise many independent individuals in accordance with certain aggregation rules to form a coordinated, orderly group movement mechanism. Similar to biological clusters, in the field of robotics or UAVs, unmanned swarm systems are crowded intelligent systems. These systems consist of multiple homogeneous or heterogeneous unmanned equipment to achieve mutual behavior coordination and jointly complete specific tasks through interactive feedback and incentive response of information. In practical applications, an unmanned swarm system needs to meet the requirements of an open environment, a changeable situation, limited resources, and real-time responses. This system needs to have multicore collaborative capabilities such as distributed collaborative perception, intelligent collaborative decision-making, and robust collaborative control. The distributed intelligent collaborative control method based on DRL can fully meet the control requirements of high intelligence and robustness of unmanned cluster systems.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164