<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

中國鋼鐵行業數字化碳管理發展探討

Advancing digital carbon management in China’s steel industry

  • 摘要: 為了緩解全球氣候變暖,應對碳關稅等國際貿易形式對中國鋼鐵行業帶來的沖擊和影響,助力鋼鐵行業早日實現“碳達峰+碳中和”的目標. 基于中國鋼鐵行業碳排放現狀與鋼鐵企業碳管理的痛點,本文通過深度融合數字化技術,創新提出了數字化技術賦能鋼鐵行業應用架構,通過分析鋼鐵行業數字化碳管理的典型案例,討論了不同階段數字化碳管理體系建設的側重點,并針對性地提出了相應的應對策略. 本文提出的數字化碳管理的架構應該主要包括四個層次:基礎設施層&數據采集層、數據運算層、業務應用層和用戶層. 數字化碳管理在鋼鐵行業的應用場景應該主要包括碳核算、碳賬戶、碳全景、碳結構&碳比對、碳交易、碳報告、碳咨詢、能碳協同、低碳指數、供應鏈產品碳足跡管理,產品實時碳足跡跟蹤、數字化碳標簽、識別節能潛力和生態設計等. 通過研究鋼鐵行業數字化碳管理的典型應用案例,探討了數字化碳管理技術應用在鋼鐵行業的展望,按照鋼鐵行業是否納入全國碳交易市場,將中國鋼鐵行業數字化碳管理體系的建設分為兩個階段,認為政府部門應該發揮在數字化碳管理體系建設過程中的主導作用,在健全數字化碳管理相關標準和法規體系的同時,應該注重數字化碳管理人才的培養,緊密對接企業現有的信息化系統,并提出了“六化一體+多平臺”的鋼鐵行業數字化碳管理的發展趨勢,即“一主體+多平臺”的低碳產品評價認證體系,和具有標準化、國際化、一體化、安全化、資產化和本土化特點的數字化碳管理體系. 將數字化碳管理技術應用到鋼鐵行業,能夠更好地解決鋼鐵行業碳管理的亂象和企業碳管理的痛點,降低鋼鐵行業碳管理的門檻,提高鋼鐵行業碳管理的效率,保障碳數據在傳遞過程中的安全.

     

    Abstract: To address global warming, respond to international trade pressures (such as carbon tariffs) affecting China’s iron and steel industry, and help the steel industry achieve the goal of “carbon peak + carbon neutrality,” this paper examines the current carbon emissions landscape within China’s iron and steel industry and identifies the challenges encountered by steel enterprises in managing carbon emission. An innovative framework for leveraging digital technology to enhance the capabilities of the iron and steel industry is proposed. Drawing insights from notable instances of digital carbon management in the steel industry, key priorities at different stages of building a digital carbon management system are explored, and corresponding strategies are put forward. The framework of digital carbon emission management comprises four layers: infrastructure and data acquisition, data processing, business application, and user interface layers. The envisioned applications of digital carbon management in the steel industry encompass carbon accounting, carbon reporting, carbon mapping, carbon structure analysis, carbon comparisons, carbon trading, carbon consulting, energy–carbon synergy, low-carbon index, management of product carbon footprints along the supply chain, real-time tracking of product carbon footprints, digital carbon labeling, identification of energy-saving potential, and ecological design. By delving into representative case studies of digital carbon management within the steel industry, the potential for the application of digital carbon management technology in the steel industry is analyzed. A two-stage approach for implementing a digital carbon management system in China’s steel industry was proposed, contingent on whether the industry becomes part of the national carbon trading market. Government should play a leading role in guiding the development of the digital carbon management system. Simultaneously, we emphasize the need to enhance relevant standards and regulations in digital carbon management, invest in the training of professionals in this field, and establish strong connections with existing enterprise information systems. We advocate for a future trend of “six integration + multiplatform” digital carbon management within the steel industry, featuring a “one body + multiplatform” evaluation and certification system for low-carbon products. This vision for digital carbon management encompasses characteristics such as standardization, internationalization, integration, security, asset management, and localization. Integrating digital carbon management technology into the steel industry holds the potential to streamline carbon management processes, alleviate pain points experienced by enterprises, lower barriers to carbon management, increase operational efficiency, and safeguard carbon data during transmission.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164