<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

基于多模態信息融合的四足機器人避障方法

Obstacle avoidance approach for quadruped robot based on multi-modal information fusion

  • 摘要: 提出了一種全新的基于多模態信息融合技術的四足機器人避障方法. 該方法將機器人的本體傳感器信息與外部傳感器信息相結合,以提高機器人在復雜環境下的決策能力. 具體而言,該方法設計了一種多模態強化學習神經網絡模型,使機器人能夠從自身的傳感數據和外部傳感器數據中學習. 該模型采用監督和非監督學習技術相結合的方法進行訓練,以優化機器人在避障任務中的表現. 此外,還創新地引入了Transformer層和注意力機制,使機器人能夠有選擇地關注相關的傳感信息并過濾掉無關信息,提高在未知動態環境中的規劃可靠性. 該方法在具有不同障礙物、不平坦地形等具有挑戰性的模擬環境中進行了評估. 實驗結果表明,所提出的方法相較于對照組可以顯著提高四足機器人的避障成功率. 此外,由于引入了注意力機制,所提出的算法在動態未知環境下也具有一定的可靠性,使其在實際應用中更加實用. 本文的意義主要在于引入多模態信息融合技術和Transformer層,以提高機器人在避障任務中的表現. 通過仿真環境的實驗結果顯示,該學習策略能夠顯著改善機器人的運動控制能力,并且多模態Transformer模型進一步增強了其性能使其具備優越的泛化性. 此外,進一步的分析和可視化也表明了學習策略利用外部輸入進行決策的有效性.

     

    Abstract: This paper proposes a multimodal information fusion neural network model that integrates visual, radar, and proprioceptive information. The model uses a spatial crossmodal attention mechanism to fuse the information, allowing the robot to focus on the most relevant information for obstacle avoidance. The attention mechanism enables the robot to selectively focus on the most relevant informative sensory inputs, which improves its ability to navigate complex terrain. The proposed method was evaluated using multiple experiments in challenging simulated environments, and the results showed a significant improvement in the obstacle avoidance success rate. The proposed method uses an actor–critic architecture and a proximal policy optimization (PPO) algorithm to train the robot in a simulated environment. The training process aims to reduce the difference between the robot’s performance in simulated and real-world environments. To achieve this, we randomly adjust the simulation environment’s parameters and add random noise to the robot’s sensory inputs. This approach allows the robot to learn a robust planning strategy that can be deployed in real-world environments. The multimodal information fusion neural network model is designed using a transformer-based architecture. The model shares the encoding of three types of tokens and generates features for the robot’s proprioceptive, visual, and point cloud inputs. The transformer encoder layers are stacked such that the token information from the three modalities can be fuzed at multiple levels. To balance the information from the three modalities, we first separately collect information for each modality and calculate the average value of all tokens from the same modality to obtain a single feature vector. This multimodal information fusion approach improves the robot’s decision-making capabilities in complex environments. The novelty of the proposed method lies in the introduction of a spatial crossmodal attention mechanism that allows the robot to selectively attend to the most informative sensory inputs. This attention mechanism improves the robot’s ability to navigate complex terrain and provides a certain degree of reliability for the quadruped robot in dynamic unknown environments. The combination of multimodal information fusion and attention mechanism enables the robot to adapt better to complex environments, thus improving its obstacle avoidance capabilities. Therefore, the proposed method provides a promising approach for improving the obstacle avoidance capabilities of quadruped robots in complex environments. The proposed method is based on the multimodal information fusion neural network model and spatial crossmodal attention mechanism. The experimental results demonstrate the effectiveness of the proposed method in improving the robot’s obstacle avoidance success rate. Moreover, the potential applications of the proposed method include search and rescue missions, exploration, and surveillance in complex environments.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164