<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

機理模型與集成學習混合驅動的機器人關節摩擦建模方法

Hybrid friction modeling method for robot joints integrating mechanistic model and ensemble learning

  • 摘要: 機器人一體化關節廣泛應用于醫療、協作機器人等領域,其摩擦特性是影響機器人性能的關鍵因素. 為此,提出了一種機理模型與集成學習混合驅動的機器人關節摩擦建模方法,以提高模型精度. 首先,綜合考慮轉速、負載等關節摩擦特性的影響因素及其周期波動特性,基于先驗知識和物理分析分別建立了伺服電機與諧波減速器的參數化機理模型,描述摩擦特性的變化規律. 然后,針對機理建模中因線性假設、忽略高階項等產生的非線性殘差,提出了基于eXtreme gradient boosting (XGBoost)的殘差補償模型建模方法,通過采用Boosting集成學習策略,提高殘差補償模型的泛化能力. 同時,采用貝葉斯優化方法進行XGBoost模型的超參數尋優,以提高模型精度和訓練效率. 相比于傳統的參數化機理模型,本文所提出的混合驅動模型具有更高精度. 與反向傳播神經網絡、支持向量機、長短時記憶神經網絡等多種典型方法的對比實驗表明,本文所提出的基于XGBoost的殘差補償模型具有更強的特征提取能力,能夠較好地預測強非線性的波動摩擦殘差,有效地提高了整體模型的精度.

     

    Abstract: Robot integrated joints are extensively employed in the fields of medical and collaborative robots, and their friction characteristics are the crucial factors that affect robot performance. To improve the accuracy of the friction model, a hybrid friction modeling method integrating the mechanistic model and ensemble learning is proposed herein. First, the mechanistic model is developed based on the comprehensive analysis of various factors influencing joint friction and its periodic fluctuation. Assuming that the viscous friction and flow rate of lubricants are linear, the Stribeck model is used to describe the relationship between friction torque and motor velocity. Meanwhile, the Fourier series is used to model the periodic fluctuation of joint friction with the motor angle. The main harmonic components of the fluctuating friction torque are concentrated in the low frequency range. Considering the high frequency components will increase the complexity of the model, while the accuracy improvement of the parameterized model is limited. Therefore, the high-frequency components of the fluctuating friction torque are neglected. Moreover, considering the power function rule between external load and Coulomb friction, a simplified parametric mechanistic model is developed to describe the changes in joint friction under external load. Second, for the nonlinear residual error of the mechanistic model caused by linear hypothesis and neglecting higher-order terms, a residual compensation model based on eXtreme Gradient Boosting (XGBoost) is proposed. By adopting the boosting ensemble learning strategy, the generalization ability of the residual compensation model is enhanced. The input of the XGBoost model includes the independent variables of the parametric mechanistic model, namely the motor angle, motor velocity, and external load. The output is the difference between actual friction torque and its predicted value by the mechanistic model. Further, the Bayesian optimization method is employed for the optimization of the hyperparameters of the XGBoost model to improve model accuracy and training efficiency. Finally, a series of experiments are performed based on a joint-friction measurement platform and industrial robots to verify the effectiveness of the proposed method. Compared with the parametric mechanistic model, the prediction error of the proposed hybrid model is mainly maintained within ±0.005 N·m, and the peak error, mean absolute error (MAE), and root mean square error (RMSE) are reduced by more than 60%. Comparison experiments with backpropagation neural networks, support vector machines, and long short-term memory neural networks reveal that the nonlinear fluctuation of friction residuals can be well predicted by the proposed method and the MAE and RMSE are reduced by more than 40%. Thus, the proposed XGBoost-based residual compensation model exhibits stronger feature extraction ability and can effectively improve the accuracy of the hybrid friction modeling method.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164