<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

脫合金納米材料的制備及其在堿金屬離子電池負極中的應用進展

Progress in preparation and application for alkali metal ion battery anodes of dealloyed nanomaterials

  • 摘要: 堿金屬離子電池包括鋰離子電池、鈉離子電池和鉀離子電池等,是一種非常有應用前景的電化學儲能裝置. 在“雙碳”背景下,隨著電動汽車的快速普及,對電池的能量密度提出了更高的要求. 硅、鍺、錫、銻、鉍等因具有高的理論比容量有望實現在高能量密度電池中的應用. 由于具有成本低、結構可控和工業應用潛力大等特點,脫合金技術常用來制備硅、鍺、銻等負極材料,并實現對硅、鍺、銻等脫合金材料的結構、形態和空間排列的動態控制. 本文闡述了脫合金技術的常見分類和代表性研究進展,重點討論了由脫合金技術制備多種維度的納米材料以及它們在堿金屬離子電池等儲能領域的應用情況,最后對脫合金技術的發展趨勢以及脫合金技術在儲能領域的應用前景進行了展望.

     

    Abstract: SONY achieved the commercialization of lithium-ion batteries (LIBs) in 1991. Compared with traditional lead-acid and nickel-cadmium secondary batteries, the novel energy storage device offers the advantages of no memory effect, longer cycle life, and higher energy density. The continuous development of electrolytes, electrode structure, and battery production has resulted in the doubling of the energy density of LIBs since 1991. Lithium resources are limited, expensive, and unevenly distributed. Researchers are committed to replacing lithium with other inexpensive alkali metals, such as sodium and potassium, to reduce cost and save lithium resources. Sodium ion batteries (SIBs) and potassium ion batteries (PIBs) have attracted increasing attention because of their relatively low cost and abundant reserves. With the rapid development of electric automobiles, battery anode materials with high energy density have been drawing increasing attention. Owing to their high energy capacity, Group IV elements (Si, Ge, and Sn) and Group V elements (Sb and Bi) are considered appealing anode materials for LIBs, SIBs, and PIBs. Various methods, such as the hydrothermal method, template method, chemical precipitation, and magnetron sputtering method, are used for preparing anode materials. The dealloying technique is considered an effective method to fabricate alkali metal ion battery anode materials because of its scalable production, controllable structure, and low cost. This is a typical process in which the active components in the precursor alloy are selectively removed, with the residual components reorganizing into a nanostructure with specific morphology and space arrangement. The size, dimension, and morphology of battery anode materials play a considerable role in boosting electrochemical performance. The dealloying technique can be used to achieve the dynamic control of structure, morphology, and spatial arrangement by regulating dealloying and subsequent treatment processes. It can be categorized as chemical, electrochemical, liquid metal, and vapor phase dealloying. Thus far, researchers have successfully synthesized several nanomaterials via the dealloying technique, including three-dimensional (3D) nanoporous Si, 3D nanoporous Ge, 2D Si nanosheets, 1D Bi nanorods, and 0D Sb nanoparticles. Compared with bulk materials, dealloyed nanomaterials have large specific surface areas and remarkable structural stability. Hence, when used as anodes for LIBs, SIBs, and PIBs, dealloyed nanomaterial anodes usually deliver outstanding electrochemical performance. This review describes the common classification of dealloying techniques and the representative research progress. Emphasis is placed on the preparation of dealloyed nanomaterials with various dimensions and the application of dealloyed nanomaterials in alkali metal ion batteries. Finally, the development trend of dealloying and its application prospects in energy storage are also discussed.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164