<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

鋼渣去除酸性礦山廢水中硫酸鹽的機理研究

Mechanism of the sulfate removal process for acid mine drainage using steel slag

  • 摘要: 我國酸性礦山廢水(AMD)中硫酸鹽含量普遍較高,尋找一種有效去除廢水中硫酸鹽的方法,對于酸性礦山廢水的治理具有重要意義. 鑒于轉爐鋼渣處理AMD具有較好的應用前景,本文采用單因素實驗方法分析了硫酸鹽在鋼渣處理AMD中的去除效果及機理,結果表明鋼渣粒度、廢水pH值、固液比、硫酸鹽濃度會影響硫酸鹽去除效率. 當鋼渣粒徑小于75 μm,體系 pH為2,固液比為70 g·L?1時,初始硫酸鹽質量濃度為2000 mg·L?1時,硫酸鹽的去除率最高為79.15%,吸附量分為36.79 mg·g?1;動力學分析及機理分析表明,硫酸鹽的去除符合準二級動力學模型和Freundlich等溫吸附模型,鋼渣與硫酸鹽間的作用以多層化學吸附為主,同時伴隨化學沉淀、靜電吸附和表面絡合作用.

     

    Abstract: In China, the sulfate levels in acid mine drainage (AMD) are generally high. Developing an effective method to eliminate sulfate from wastewater is imperative for AMD treatment. Considering the promising prospect of treating AMD with converter steel slag, we analyze the removal effect and mechanism of sulfate in AMD treatment with steel slag by a single-factor experimental method. The adsorption amount and removal rate are determined using an ultraviolet spectrophotometer. The findings reveal that the removal efficiency of sulfate was influenced by the particle size of steel slag, pH of wastewater, solid–liquid ratio, and sulfate concentration. When the particle size of steel slag is less than 75 μm, the pH of the system is 2, the solid–liquid ratio is 70 g·L?1, and the initial sulfate concentration is 2000 mg·L?1; moreover, the removal rate of sulfate is the highest, which is 79.15% and the adsorption capacity is 36.79 mg·g?1. By linearly fitting the adsorption capacity data to the Langmuir and Freundlich equations, the adsorption process of sulfate on the steel slag surface is more in line with the Freundlich adsorption model. Furthermore, thermodynamic calculations demonstrate that the Gibbs free energy change (?G) of adsorption is negative and enthalpy change (?H) and entropy change (?S) are both positive, which demonstrates that the process of sulfate adsorption on steel slag is spontaneous, entropy-driven, and endothermic chemical adsorption. Moreover, when the adsorption temperature is between 301 and 321 K, the adsorption capacity increases with increasing adsorption time and temperature, and when the adsorption time reaches 1320 min, the increasing trend of adsorption capacity slows down. Kinetic calculation results indicate that the equilibrium adsorption amount calculated using the secondary reaction rate equation is similar to the experimental equilibrium adsorption capacity, suggesting that the adsorption of sulfate on the steel slag surface conforms to the secondary adsorption kinetic model. Sulfate removal is mainly controlled by chemical processes, and material transport is not the main controlling step. Based on the intraparticle diffusion fitting results, the adsorption process goes through three stages: external rapid adsorption, internal gradual diffusion, and finally equilibrium. X-ray diffraction of steel slag before and after adsorption exhibits that sulfate existed on the steel slag surface in the form of gypsum, which was corroborated by Fourier-transform infrared spectroscopy analysis and scanning electron microscopy characterization. In conclusion, the reaction between steel slag and sulfate is dominated by multilayer chemical adsorption combined with chemical precipitation, electrostatic adsorption, and surface complexation.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164