<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

考慮巖體性質空間變異的巖爆傾向性概率評估

Probability evaluation of rockburst tendency considering the spatial variation in rock mass properties

  • 摘要: 為了探究更為符合工程實際的巖爆傾向性評判方法,對巖爆傾向性及其不確定性問題進行了研究. 首先,建立改進的黏結強度弱化?摩擦強度強化模型,結合能量指標實現巖爆傾向性分析;依托埋深超千米的大紅山銅礦工程,將點估計?有限元分析應用于巖爆傾向性評判,構建分析模型;進一步求得巖爆傾向性的概率模型,并得到直觀的概率分布情況. 結果表明:所用本構及指標可較好地進行巖爆傾向性分析,考慮參數變異性后,95%置信度的巖爆深度與現場記錄深度吻合度較高,巖爆角度范圍也基本吻合,比僅取定值更為準確,驗證了所作不確定性分析的可行性與正確性. 不同統計指標符合不同的分布函數,巖爆深度、范圍角及完全能量釋放值的最優分布分別為Normal分布、Gamma分布及Lognormal分布. 基于深度及范圍角指示,以80%、40%、20%為界限,可將傾向性概率劃分為極大、大、中、小四個等級區間,巖爆區域的概率分布圖可以更為直觀合理地判斷出巖爆破壞的區域和概率. 研究結果對巖爆支護及風險評估具有參考意義.

     

    Abstract: Rockburst disasters pose an increasing threat to the construction safety of deep-buried engineering; thus, rockburst prediction is crucial for ensuring construction safety. However, due to the spatial variation in mechanical properties of rock mass, the actual results of rockburst prediction remain uncertain to some extent. In this study, rockburst tendency and its probability were studied to explore a more suitable evaluation method for rockburst tendency in engineering practice. First, an improved cohesion weakening–friction strengthening model was developed considering the dynamic change of rock dilatancy strength, and the rockburst tendency analysis was combined with the energy index. The point estimation-finite element analysis method was used to analyze rockburst tendency based on the Dahongshan copper mine project buried at a depth greater than 1,000 m. A finite element model was constructed, in which initial cohesion, residual cohesion, residual friction angle, viscous plastic strain critical value, critical value of cohesion plastic strain, and critical value of friction angle plastic strain were used as input variables, and rockburst depth, range, and local energy release value were used as output variables. The specific methods and steps of problem analysis were also elucidated. Furthermore, the probability model of rockburst failure was obtained, and the probability density function and cumulative distribution function were obtained. The probability distribution of the rockburst area was obtained by meshing the failure elements and weight combinations of different scheme results. The research results revealed that the constitutive model and index can better represent the rockburst damage compared with other methods. After considering the variability of rock mass parameters, the depth of rockburst with 95% confidence is consistent with the depth recorded in the field, and the angle range also agrees, which is more accurate than only the fixed value, thus verifying the feasibility and correctness of the uncertainty analysis. The data predicts the unspecified range and local energy release value. Moreover, different statistical indicators conform to different distribution functions. Normal, gamma, and lognormal distributions are optimal for rockburst depth, angle, and local energy release value, respectively. Thus, based on the analysis indication of depth and range, with 80%, 40%, and 20% as the limits, the probability of tendency can be divided into maximum, large, medium, or small, respectively. The probability distribution map of the rockburst area can more intuitively determine the area and probability of rockburst damage. The research results are significant for rockburst support and risk assessment.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164