<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

SP700鈦合金熱變形行為及組織演變

Hot deformation behavior and microstructure evolution of SP700 titanium alloy

  • 摘要: 采用Gleeble3800熱模擬試驗機對SP700鈦合金進行熱壓縮試驗,研究合金在變形溫度為800~880 ℃、應變速率為1~10 s–1、壓縮變形量為30%和50%條件下的流變行為及顯微組織演變. 結果表明,隨著變形溫度升高和應變速率降低,SP700鈦合金熱壓縮變形的峰值流變應力降低. 合金在800 ℃壓縮變形時,流變應力曲線呈明顯的動態軟化,其顯微組織中α片層逐漸破碎球化,部分α片層發生動態再結晶. 隨變形溫度升高,合金壓縮真應力–應變曲線呈穩態流變狀態. 在相同變形溫度下,隨應變速率和壓縮變形量增加,α片層球化程度增加. 熱變形過程中,平行于壓縮軸的α片層在壓應力作用下彎曲扭折,片層內取向差不連續存在,并于不連續處存在新α/α界面. 垂直于壓縮軸的α片層在壓應力作用下界面發生起伏,片層內部存在累積取向差. 在界面起伏處β相楔入α片層,最終導致α片層的破碎球化.

     

    Abstract: The hot compression test of SP700 titanium alloy was performed using a Gleeble3800 thermal simulation test machine, and the thermal deformation behavior and microstructure evolution were examined in the temperature range of 800–880 °C, strain rate range of 1–10 s?1, and compression deformation of 30%–50%. The findings reveal that the peak flow stress of the SP700 titanium alloy decreases with increasing deformation temperature but increases with increasing strain rate. At a deformation temperature of 800 ℃, the flow stress curves demonstrate evident dynamic softening features with a rapid decrease in flow stress after the peak stress. By metallographic and scanning electron microstructure observations of the deformed microstructure, the α lamellar is gradually broken and spheroidized, and dynamic recrystallization occurs. With increasing deformation temperature, the induced phase transformation occurs, which leads to the dissolution of the α phase and an increase in the volume fraction of the β phase. The degree of recrystallization of the β phase increases with several β recrystallization grains at the grain boundaries, whereas the degree of globularization of the α lamellae decreases with increasing temperature. As the deformation temperature increases to 880 ℃, the flow stress curves exhibit steady flow. Recrystallization behavior preferentially occurs in the β grains, while the α lamellar remains flat without globularization behavior. That is, recrystallization of the β phase occurs under the test deformation conditions. For the α lamellae, when the deformation temperature is constant, the degree of spheroidization of the α lamellae increases with strain rate and compression deformation. During the hot deformation process, the α lamellae parallel to the compression axis kink, and the cumulative misorientation is discontinuous inside the α lamellae. At the discontinuous points, the new α/α interface boundary is produced, which causes the formation of unstable dihedral angles. To lower the surface tension energy, the β phase wedges into the α lamellae, which eventually results in the break of the α lamellae. For the α lamellae perpendicular to the compression axis, the interface fluctuates, resulting in continuous cumulative misorientation inside the α lamellae. When the rotation axis of the lamellae changes, a new α/α interface boundary is produced. At the interface fluctuation or the new α/α interface, the β phase easily wedges into the α lamellae by element diffusion, which finally causes fragmentation and spheroidization. Moreover, some of the α lamellae experience a shear deformation, leading to fragmentation under compression.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164