<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

脈沖泵壓環境膏體水分遷移轉化與流變行為數值推演

夏志遠 程海勇 吳順川 姜關照 劉津 孫偉 劉澤民

夏志遠, 程海勇, 吳順川, 姜關照, 劉津, 孫偉, 劉澤民. 脈沖泵壓環境膏體水分遷移轉化與流變行為數值推演[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2023.02.08.005
引用本文: 夏志遠, 程海勇, 吳順川, 姜關照, 劉津, 孫偉, 劉澤民. 脈沖泵壓環境膏體水分遷移轉化與流變行為數值推演[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2023.02.08.005
XIA Zhiyuan, CHENG Haiyong, WU Shunchuan, JIANG Guanzhao, LIU Jin, SUN Wei, LIU Zemin. Migration and transformation of water in paste and numerical deduction of its rheological behavior under pulse pumping environment[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.02.08.005
Citation: XIA Zhiyuan, CHENG Haiyong, WU Shunchuan, JIANG Guanzhao, LIU Jin, SUN Wei, LIU Zemin. Migration and transformation of water in paste and numerical deduction of its rheological behavior under pulse pumping environment[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.02.08.005

脈沖泵壓環境膏體水分遷移轉化與流變行為數值推演

doi: 10.13374/j.issn2095-9389.2023.02.08.005
基金項目: 國家自然科學基金資助項目(52074137); 云南省重大科技項目(202202AG050014);云南省面上基金(202201AT070151); 云南省創新團隊資助項目(202105AE160023)
詳細信息
    通訊作者:

    E-mail: haiker2007@163.com

  • 中圖分類號: TD853

Migration and transformation of water in paste and numerical deduction of its rheological behavior under pulse pumping environment

More Information
  • 摘要: 通過微細觀結構分析、低場核磁共振量化研究,科學、準確地描述膏體跨尺度顆粒群存在形態與水分賦存狀態,并基于有限元和離散元耦合數值分析方法分析了泵壓擾動下膏體顆粒流態演化規律。研究發現,膏體料漿中的吸附水、間隙水和弱自由水存在動態連通與轉化行為,并主要以吸附水形式存在,低場核磁共振技術(Low-field nuclear magnetic resonance, LF-NMR)弛豫強度與吸附水峰面積非線性增強,與料漿的流動表現出顯著的正相關性。液網結構與絮網結構反映了導水通道的活躍性與力鏈結構的強度,共同組成了膏體穩定性與流動性的雙支撐骨架結構。通過Fluent-EDEM軟件耦合模擬,分析了脈沖泵壓環境顆粒運動行為,在速度差的影響下高、低流速顆粒沖擊擾動加劇,力鏈接觸作用增強,流態均勻性和整體顆粒運動穩定性可有效提高。

     

  • 圖  1  硫化錫礦尾砂粒級分布

    Figure  1.  Particle size distribution of tin sulfide ore tailings

    圖  2  MacroMR12-150H-1LF-NMR分析與成像系統. (a) 低場核磁共振分析與成像設備;(b) 核磁共振樣品放置位置; (c) 實物照片

    Figure  2.  MacroMR12-150H-1 LF-NMR analysis and imaging system: (a) LF-NMR equipment; (b) nuclear magnetic resonance sample placement position; (c) photo of sample

    圖  3  Ope.A1蔡司偏光顯微鏡(a)和膏體細觀圖像(b)

    Figure  3.  Ope.A1 zeiss polarizing microscope (a) and paste microscopic image (b)

    圖  4  管道模擬模型(a)與EDEM虛擬標定(b)

    Figure  4.  Pipeline simulation model (a) and EDEM virtual calibration (b)

    圖  5  不同減水劑摻量的膏體料漿T2弛豫特征

    Figure  5.  T2 relaxation characteristics of paste slurry with different water reducing agent

    圖  6  No.1峰面積變化特征

    Figure  6.  Variation characteristics of No.1 peak area

    圖  7  膏體料漿中各水相弛豫時間

    Figure  7.  Relaxation time of every aqueous phase in paste slurry

    圖  8  膏體細觀顯微結構. (a) 1#料漿; (b) 2#料漿

    Figure  8.  Microstructure of paste: (a) slurry 1#; (b) slurry 2#

    圖  9  水體網絡架構與分形特征. (a) 1#料漿二值化圖像; (b) 1#料漿分形維數; (c) 2#料漿二值化圖像; (d) 2#料漿分形維數

    Figure  9.  Basic structure and fractal characteristics of water network: (a) binary image of slurry 1#; (b) fractal dimension of slurry 1#; (c) binary image of slurry 2#; (d) fractal dimension of slurry 2#

    圖  10  絮網和液網單元結構. (a) 絮網結構占主導作用; (b) 液網結構占主導作用

    Figure  10.  Flocculation net and liquid net unit structure: (a) predominated flocculation floc net structure; (b) predominated liquid network structure

    圖  11  液網與絮團接觸邊緣線提取. (a) 1#料漿液網邊緣; (b) 2#料漿液網邊緣

    Figure  11.  Extraction of contact edge line between liquid screen and floc: (a) 1# edge of slurry screen; (b) 2# edge of slurry screen

    圖  12  絮團面積統計. (a) 1#料漿; (b) 2#料漿

    Figure  12.  Floc area statistics: (a) 1# slurry; (b) 2# slurry

    圖  13  脈沖泵壓特征

    Figure  13.  Characteristics of pulse pump pressure

    圖  14  脈沖來壓環境膏體顆粒流態Ⅰ

    Figure  14.  Paste particle flow pattern I under pulse pressure environment

    圖  15  脈沖來壓環境膏體顆粒流態II(a)與固定流速穩定流態(b)

    Figure  15.  Paste particle flow pattern II (a) and stable flow pattern with fixed flow rate (b) diagram under pulse pressure environment

    圖  16  脈沖來壓環境膏體顆粒流態Ⅲ

    Figure  16.  Paste particle flow pattern Ⅲ under pulse pressure environment

    圖  17  顆粒接觸力鏈. (a) 脈沖來壓環境膏體顆粒接觸力鏈; (b) 固定流速穩定流態顆粒接觸力鏈

    Figure  17.  Contact force chain of particles: (a) pulse pressure environment; (b) steady flow particles with fixed velocity

    表  1  全尾砂及水泥化學組成(質量分數)

    Table  1.   Chemical composition of total tailings and cement %

    MaterialSiO2Al2O3Fe2O3CaOMgOSOther
    Total tailings36.416.7211.5825.933.091.9814.29
    Cement21.504.502.0063.504.002.502.00
    下載: 導出CSV

    表  2  實驗材料配比方案

    Table  2.   Proportioning of experimental materials

    Serial No.Mass
    fraction /%
    Cement sand
    mass ratio
    Water cement
    mass ratio
    1#801∶102.75∶1
    2#801∶102.75∶1
    3#801∶102.75∶1
    4#801∶102.75∶1
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Cheng H Y, Wu A X, Wu S C, et al. Research status and development trend of solid waste backfill in metal mines. Chin J Eng, 2022, 44(1): 11

    程海勇, 吳愛祥, 吳順川, 等. 金屬礦山固廢充填研究現狀與發展趨勢. 工程科學學報, 2022, 44(1):11
    [2] Wu A X, Wang Y, Zhang M Z, et al. New development and prospect of key technology in underground mining of metal mines. Met Mine, 2021(1): 1

    吳愛祥, 王勇, 張敏哲, 等. 金屬礦山地下開采關鍵技術新進展與展望. 金屬礦山, 2021(1):1
    [3] Wu A X, Wang H J. Theory and Technology of Paste Backfill in Metal Mines. Beijing: Science Press, 2015

    吳愛祥, 王洪江. 金屬礦膏體充填理論與技術. 北京: 科學出版社, 2015
    [4] Wu A X, Li H, Cheng H Y. Ageometric method for flow pattern identification of yield stress fluids. J China Univ Min Technol, 2023, 52(1): 1

    吳愛祥, 李紅, 程海勇. 屈服型非牛頓流體流型演化的幾何判別. 中國礦業大學學報, 2023, 52(1):1
    [5] Li H, Xu B, Wang N, et al. Fluidity test of paste filling slurry of Chambishi copper mine. Met Mine, 2021(6): 127

    李輝, 許斌, 王娜, 等. 謙比希銅礦膏體充填料漿流動性測試. 金屬礦山, 2021(6):127
    [6] Li H, Wu A X, Cheng H Y. Generalized models of slump and spread in combination for higher precision in yield stress determination. Cem Concr Res, 2022, 159: 106863 doi: 10.1016/j.cemconres.2022.106863
    [7] Pullum L, Slatter P, Vietti A J. Transport characteristics of tabilized co-disposal tailings line // Proceedings 12th Transport and Sedimentation of Solids Particles. Prague, 2004
    [8] Cheng H Y, Wu S C, Zhang X Q, et al. Effect of particle gradation characteristics on yield stress of cemented paste backfill. Int J Miner Metall Mater, 2020, 27(1): 10 doi: 10.1007/s12613-019-1865-y
    [9] Pullum L, Graham L, Wu J. Bed establishment lengths under laminar flow // 18th International Conference on the Hydraulic Transport of Solids. Rio de Janeiro, 2010
    [10] Capecelatro J, Desjardins O. Eulerian-Lagrangian modeling of turbulent liquid-solid slurries in horizontal pipes. Int J Multiph Flow, 2013, 55: 64 doi: 10.1016/j.ijmultiphaseflow.2013.04.006
    [11] Yu J B. Analysis and Application of the Algorithm by Combining Discrete and Finite Element Method In-plane [Dissertation]. Guangzhou: South China University of Technology, 2011

    余潔冰. 離散元與有限元面內耦合算法的研究及應用[學位論文]. 廣州: 華南理工大學, 2011
    [12] Yao Y. Numerical Study on Euler-Lagrange Coupling with GEL Method in Multi-Material Hydrodynamics [Dissertation]. Mianyang: China Academy of Engineering Physics, 2006

    姚陽. 多介質流體力學Euler-Lagrange耦合計算的GEL方法研究[學位論文]. 綿陽: 中國工程物理研究院, 2006
    [13] Yao J X, Yang Y, Huang Z L, et al. Impact of viscosity model on simulation of condensed particle flow by Euler multiphase flow model. CIESC J, 2020, 71(11): 4945

    姚晶星, 楊遙, 黃正梁, 等. 顆粒黏度模型對采用歐拉多相流模型模擬超密相顆粒流動行為的影響. 化工學報, 2020, 71(11):4945
    [14] Leonardi A, Wittel F K, Mendoza M, et al. Coupled DEM-LBM method for the free-surface simulation of heterogeneous suspensions. Comp Part Mech, 2014, 1(1): 3 doi: 10.1007/s40571-014-0001-z
    [15] Chen S G. Development of LBM-DEM for Bingham Suspensions with Application to Self-compacting Concrete [Dissertation]. Beijing: Tsinghua University, 2014

    陳松貴. 賓漢姆流體的LBM-DEM方法及自密實混凝土復雜流動研究[學位論文]. 北京: 清華大學, 2014
    [16] Shao M, Wang A L, Ma L X, et al. Trajectory flexible model for particle group of 3D fluid-solid two-phased flow. J Mach Des, 2004, 21(6): 28

    邵萌, 王安麟, 馬立新, 等. 三維流固兩相流的顆粒群軌道柔性模型. 機械設計, 2004, 21(6):28
    [17] Spitzenberger A, Neumann S, Heinrich M, et al. Particle detection in VOF-simulations with OpenFOAM. SoftwareX, 2020, 11: 100382 doi: 10.1016/j.softx.2019.100382
    [18] Yang L H. Research on the Rheological Characteristics and the Mechanism of Shear Action during Paste Mixing [Dissertation]. Beijing: University of Science and Technology Beijing, 2020

    楊柳華. 膏體攪拌過程流變特性及剪切作用機制研究[學位論文]. 北京: 北京科技大學, 2020
    [19] Zhou X. Study on Rules of Aggregate Structure Evolution and Mud Densification during Unclassified Tailings Thickening [Dissertation]. Beijing: University of Science and Technology Beijing, 2019

    周旭. 全尾砂濃密過程絮團結構演化及脫水規律研究[學位論文]. 北京: 北京科技大學, 2019
    [20] Yang X. Study on Water and Salt Migration Laws and Replacement Disposal Method of Sulfate Saline Soil Subgrade in Arid Desert Areas [Dissertation]. Lanzhou: Lanzhou University of Technology, 2022

    楊熙. 旱漠區硫酸鹽漬土路基水鹽遷移規律與換填處置方法研究[學位論文]. 蘭州: 蘭州理工大學, 2022
    [21] Zhu K, Chen Y X, Zhang J Y. Application of TEM, XRD and EIS in fundamental research of PEMFC. Battery, 2001, 31(5): 244

    朱科, 陳延禧, 張繼炎. TEM, XRD和EIS在PEMFC基礎研究中的應用. 電池, 2001, 31(5):244
    [22] Xu Z H, Wang J H. Advances in finite element analysis of soil cutting. Trans Chin Soc Agric Mach, 2005, 36(1): 134

    徐中華, 王建華. 有限元法分析土壤切削問題的研究進展. 農業機械學報, 2005, 36(1):134
    [23] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Géotechnique, 1979, 29(1): 47
    [24] Xu Z H. Research of the Buckling Deformation of Force Chain and Constitutive Model of Granular Materials [Dissertation]. Hangzhou: Zhejiang University, 2011

    徐正紅. 顆粒物質的力鏈壓曲變形及本構模型研究[學位論文]. 杭州: 浙江大學, 2011
    [25] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids. Proc R Soc Lond, 1971, 324(1558): 301
    [26] Wu T, Huang W F, Chen X S, et al. Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles. J South China Agric Univ, 2017, 38(3): 93

    武濤, 黃偉鳳, 陳學深, 等. 考慮顆粒間黏結力的黏性土壤離散元模型參數標定. 華南農業大學學報, 2017, 38(3):93
  • 加載中
圖(17) / 表(2)
計量
  • 文章訪問數:  158
  • HTML全文瀏覽量:  32
  • PDF下載量:  6
  • 被引次數: 0
出版歷程
  • 收稿日期:  2023-02-08
  • 網絡出版日期:  2023-03-28

目錄

    /

    返回文章
    返回