<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

地質冶金學建模在剛果(金)SICOMINES難處理銅鈷礦中的應用

王玲 杜宇航 趙戰鋒 張文娟 馬保中 王成彥

王玲, 杜宇航, 趙戰鋒, 張文娟, 馬保中, 王成彥. 地質冶金學建模在剛果(金)SICOMINES難處理銅鈷礦中的應用[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2023.01.02.001
引用本文: 王玲, 杜宇航, 趙戰鋒, 張文娟, 馬保中, 王成彥. 地質冶金學建模在剛果(金)SICOMINES難處理銅鈷礦中的應用[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2023.01.02.001
WANG Ling, DU Yuhang, ZHAO Zhanfeng, ZHANG Wenjuan, MA Baozhong, WANG Chengyan. Application of geometallurgical modeling in SICOMINES refractory copper–cobalt deposit in Congo (Kinshasa)[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.01.02.001
Citation: WANG Ling, DU Yuhang, ZHAO Zhanfeng, ZHANG Wenjuan, MA Baozhong, WANG Chengyan. Application of geometallurgical modeling in SICOMINES refractory copper–cobalt deposit in Congo (Kinshasa)[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.01.02.001

地質冶金學建模在剛果(金)SICOMINES難處理銅鈷礦中的應用

doi: 10.13374/j.issn2095-9389.2023.01.02.001
基金項目: 國家重點研發計劃資助項目(2022YFC2904505)
詳細信息
    通訊作者:

    E-mail: wchy3207@sina.com

  • 中圖分類號: TG142.71

Application of geometallurgical modeling in SICOMINES refractory copper–cobalt deposit in Congo (Kinshasa)

More Information
  • 摘要: SICOMINES銅鈷礦位于剛果(金)科盧韋齊南西側,是中部非洲加丹加銅礦帶的典型礦床. 由于礦床成因復雜,礦石中形成了十多種銅、鈷礦物,尤其各種鈷礦物選冶性質差異大,一直存在選冶工藝復雜,生產不穩定,回收率低的問題. 為此,本文首次采用Datamine和Leapfrog軟件構建了鈷的冶金地質學模型,首先,收集歷史勘查資料,建立礦區地層和礦化域模型,初步獲得鈷在空間的品位變化規律;其次,進行采樣設計,采集代表鈷在地層和礦體中品位分布規律的工藝礦物學樣品;再次,采用工藝礦物學綜合手段,獲得各樣品中礦物含量和鈷賦存狀態的定量數據,并采用單一域賦值法和距離冪次反比法等插值手段寫入模型;然后,根據鈷礦物選冶類型的空間分布規律劃分了5個空間選冶域,分別為適于浮選域(TYPE1)、適于磁選域(TYPE2)、適于浮選-磁選聯合分選域(TYPE3)、適于浸出域(TYPE4)和難以分選域(TYPE5),構建初步地質冶金學模型;最后,通過對5個選冶域中綜合樣分別進行選礦實驗來驗證模型. 實驗結果顯示,采用礦山現行的浮選–磁選聯合工藝流程,5個選冶域中鈷的回收率和精礦品位差距明顯,現有工藝流程只適用于空間域TYPE1、TYPE2和TYPE3,模型中選冶域的劃分合理. 根據模型中鈷的賦存狀態和有效鈷品位進行配礦,可以起到穩定現行生產工藝,提高鈷回收率的作用,同時,構建的地質冶金學模型為今后實現SICOMINES礦區鈷的分采分選提供指導.

     

  • 圖  1  礦區地質圖. (a) 地質圖;(b) 區域地質圖;(c) 地層柱狀圖

    Figure  1.  Geological map of the mining area: (a) geological map; (b) regional geological map; (c) stratigraphic histogram

    圖  2  地層模型. (a) 平面圖;(b) AB位置剖面圖

    Figure  2.  3D stratigraphic model: (a) plane view; (b) section view

    Notes: 1—Q, quaternary sediments; 2—RGS, dolomitic siltstone, mudstone; 3—CMN, dolomite, dolomitic sandstone, siltstone and shale; 4—SDS, dolomitic shale; 5—BOMZ, dolomitic quartz sandstone; 6—SDB, dolomitic shale; 7—RSC, massive and honeycomb dolomite; 8—RSF, stratified silicified dolomite and sandstone; 9—RAT, sandstone, conglomerate, siltstone and mudstone; 10—K granite basement.

    圖  3  顯示鈷品位在地層和礦體空間分布規律的礦體模型

    Figure  3.  3D orebody model representing the grade distribution of Co in the strata and ore bodies

    圖  4  樣品采集代表性統計. (a) 樣品的鈷品位分布頻率直方圖;(b) 樣品地層分布箱線圖

    Figure  4.  Representative statistics of sampling: (a) distribution frequency of Co grade; (b) distribution in strata

    圖  5  礦體模型中樣品空間分布

    Figure  5.  Spatial distribution of samples in the orebody model

    圖  6  樣品中典型鈷礦物的SEM圖及能譜分析. (a) 水鈷礦; (b) 鈷孔雀石; (c) 含鈷白云石; (d) 硫銅鈷礦; (e) 含鈷輝銅礦; (f) 含鈷綠泥石

    Figure  6.  SEM images and EDS analysis of cobalt minerals in the samples: (a) cobaltite; (b) Co-bearing malachite; (c) Co-bearing dolomite; (d) carrollite4; (e) cobalt-bearing chalcocite; (f) cobalt-bearing chlorite

    圖  7  重要礦物空間分布模型

    Figure  7.  Spatial distribution model of important minerals,

    Notes: M1—heterogenite; M2—carollite; M7—spherocobaltite; M8—Cu/Co-containing psilomelane

    圖  8  鈷礦石選冶類型空間分布

    Figure  8.  Co spatial beneficiation zones according to geometallury and processability properties

    圖  9  不同選冶域的綜合樣選礦實驗結果對比圖

    Figure  9.  Co recovery index of comprehensive samples from five beneficiation zones using combined magnetic separation and flotation process

    表  1  建模過程礦物種類及編號

    Table  1.   Mineral and code in modeling

    No. Mineral No. Mineral No. Mineral
    M1 Heterogenite M10 Co-containing dolomite M19 Quartz
    M2 Carollite M11 Dolomite M20 Feldspar
    M3 Chalcocite M12 Calcite M21 Apatite
    M4 Chalcopyrite, Pyrite M13 Chrysocolla M22 Diopsidite
    M5 Co-containing malachite M14 Pseudomalachite M23 Kaolinite
    M6 Malachite M15 Mica M24 Zircon
    M7 Spherocobaltite M16 Chlorite M25 Monazite
    M8 Cu/Co-containing psilomelane M17 Zigueline, Melaconite
    M9 Co-containing limonite M18 Rutile, Ilmenite
    下載: 導出CSV

    表  2  鈷空間選冶域劃分標準及選冶域中鈷金屬量及鈷礦物含量

    Table  2.   Division standard of Co spatial beneficiation zone and content of Co metal and Co minerals in the zone

    Type Division standard Co grade/% Mass fraction of Co mineral/%
    βCo(n) Co1 Co2 Co3 Co4
    TYPE1 βCo(1) ≥ 70 0.38 79.54 12.79 4.30 3.37
    TYPE2 βCo(2) ≥ 70 0.30 12.40 83.89 2.33 1.37
    TYPE3 βCo(1) + βCo(2) ≥ 70 0.39 46.33 40.46 6.96 6.25
    TYPE4 βCo(1) + βCo(2) < 70
    βCo(3) ≥ 60
    0.24 27.05 23.93 44.60 4.42
    TYPE5 βCo(1) + βCo(2) < 70
    βCo(3) < 60
    0.39 52.19 11.21 21.53 15.07
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Lund C, Lamberg P. Geometallurgy-A tool for better resource efficiency. Eur Geol, 2014, 37: 39
    [2] Dominy S C, O′Connor L, Parbhakar-Fox A, et al. Geometallurgy—A route to more resilient mine operations. Minerals, 2018, 8(12): 560 doi: 10.3390/min8120560
    [3] Lund C, Lamberg P, Lindberg T. Development of a geometallurgical framework to quantify mineral textures for process prediction. Miner Eng, 2015, 82: 61 doi: 10.1016/j.mineng.2015.04.004
    [4] Bhuiyan M, Esmaeili K, Ordó?ez-Calderón J C. Evaluation of rock characterization tests as geometallurgical predictors of bond work index at the Tasiast Mine, Mauritania. Miner Eng, 2022, 175: 107293 doi: 10.1016/j.mineng.2021.107293
    [5] Liu L H, Chen J, Zhou T F, et al. The new application of geometallurgy in deportment of gold and critical metals studies. Acta Petrol Sin, 2021, 37(9): 2691 doi: 10.18654/1000-0569/2021.09.06

    劉蘭海, 陳靜, 周濤發, 等. 地質冶金學及其在金和關鍵金屬賦存狀態研究中的新應用. 巖石學報, 2021, 37(9):2691 doi: 10.18654/1000-0569/2021.09.06
    [6] Tiu G, Ghorbani Y, Jansson N, et al. Tracking silver in the Lappberget Zn–Pb–Ag–(Cu–Au) deposit, Garpenberg Mine, Sweden: Towards a geometallurgical approach. Miner Eng, 2021, 167: 106889 doi: 10.1016/j.mineng.2021.106889
    [7] Dzvinamurungu T, Viljoen K S, Knoper M W, et al. Geometallurgical characterisation of merensky reef and UG2 at the marikana mine, bushveld complex, South Africa. Miner Eng, 2013, 52: 74 doi: 10.1016/j.mineng.2013.04.010
    [8] Boisvert J B, Rossi M E, Ehrig K, et al. Geometallurgical modeling at Olympic Dam Mine, South Australia. Math Geosci, 2013, 45(8): 901 doi: 10.1007/s11004-013-9462-5
    [9] Amer T E, El Assay I E, Rezk A A, et al. Geometallurgy and processing of North Ras Mohamed poly-mineralized ore materials, South Sinai, Egypt. Int J Miner Process, 2014, 129: 12 doi: 10.1016/j.minpro.2014.04.005
    [10] Zhou Y Q. Gold geometallurgy and its application. Gold Sci Technol, 2013, 21(5): 76

    周有勤. 金的地質冶金學及其應用. 黃金科學技術, 2013, 21(5):76
    [11] Dehaine Q, Tijsseling L T, Glass H J, et al. Geometallurgy of cobalt ores: A review. Miner Eng, 2021, 160: 106656 doi: 10.1016/j.mineng.2020.106656
    [12] Lutandula M S, Kitobo W S, Kime M B, et al. Mineralogical variations with the mining depth in the Congo Copperbelt: Technical and environmental challenges in the hydrometallurgical processing of copper and cobalt ores. J Sustain Mining, 2020, 19(2): 4
    [13] Dehaine Q, Tijsseling L T, Rollinson G K, et al. Geometallurgical characterisation with portable FTIR: Application to sediment-hosted Cu–Co ores. Minerals, 2021, 12(1): 15 doi: 10.3390/min12010015
    [14] Mambwe P, Shengo M, Kidyanyama T, et al. Geometallurgy of cobalt black ores in the Katanga copperbelt (Ruashi Cu–Co deposit): A new proposal for enhancing cobalt recovery. Minerals, 2022, 12(3): 295 doi: 10.3390/min12030295
    [15] Parian M, Lamberg P, M?ckel R, et al. Analysis of mineral grades for geometallurgy: Combined element-to-mineral conversion and quantitative X-ray diffraction. Miner Eng, 2015, 82: 25 doi: 10.1016/j.mineng.2015.04.023
    [16] Wang L, Zhao Z F. Application and difficulties of process mineralogy in geometallurgy modeling. Multipurp Util Miner Resour, 2020(2): 37 doi: 10.3969/j.issn.1000-6532.2020.02.006

    王玲, 趙戰鋒. 工藝礦物學在地質冶金學中的應用及問題. 礦產綜合利用, 2020(2):37 doi: 10.3969/j.issn.1000-6532.2020.02.006
    [17] Nwaila G T, Manzi M S D, Zhang S E, et al. Constraints on the geometry and gold distribution in the black reef formation of South Africa using 3D reflection seismic data and micro-X-ray computed tomography. Nat Resour Res, 2022, 31(3): 1225 doi: 10.1007/s11053-022-10064-5
    [18] Escolme A, Cooke D, Hunt J, et al. Ore characterisation and geometallurgy modelling: Productora Cu–Au–Mo deposit, Chile // GEOMET 2014 2nd International Seminar on Geometallurgy. Santiago, 2014: 1
    [19] Schouwstra R, De Vaux D, Muzondo T, et al. A geometallurgical approach at Anglo American Platinum's Mogalakwena operation // The Second AUSIMM International Geometallurgy Conference. Brisbane, 2013: 85
    [20] Montoya P A, Keeney L, Jahoda R, et al. Geometallurgical modelling techniques applicable to prefeasibility projects – La Colosa case study // The First AUSIMM International Geometallurgy Conference. Brisbane, 2011: 103
    [21] Parian M, Lamberg P, Rosenkranz J. Process simulations in mineralogy-based geometallurgy of iron ores. Miner Process Extr Metall, 2021, 130(1): 25
    [22] Pownceby M I, Johnson C. Geometallurgy of Australian uranium deposits. Ore Geol Rev, 2014, 56: 25 doi: 10.1016/j.oregeorev.2013.07.001
    [23] Chen X H, Liu Y J, Yang Y, et al. Geological characteristics and genesis of SICOMINES copper–cobalt deposit in D. R. Congo. Nonferrous Met, 2012, 64(6): 31

    陳興海, 劉運紀, 楊焱, 等. 剛果(金)SICOMINES銅鈷礦床地質特征及成因探討. 有色金屬:礦山部分, 2012, 64(6):31
    [24] Duan H C, Liu Y J, Zhang Y J, et al. Geological characteristics and prospecting criteria of SICOMINES copper–cobalt deposit in Congo. Miner Depos, 2014, 33(S1): 5 doi: 10.16111/j.0258-7106.2014.s1.005

    段煥春, 劉運紀, 張有軍, 等. 剛果(金)SICOMINES銅鈷礦礦床地質特征及找礦標志. 礦床地質, 2014, 33(S1):5 doi: 10.16111/j.0258-7106.2014.s1.005
    [25] Lei Z L, Chen X H, Wang J X, et al. Guite, the spinel-structured Co2+Co3+2O4, a new mineral from the Sicomines copper–cobalt mine, Democratic Republic of Congo. Miner Mag, 2022, 86(2): 346 doi: 10.1180/mgm.2022.27
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  182
  • HTML全文瀏覽量:  20
  • PDF下載量:  11
  • 被引次數: 0
出版歷程
  • 收稿日期:  2023-01-02
  • 網絡出版日期:  2023-04-07

目錄

    /

    返回文章
    返回