<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于OTFS的下一代車聯網新型通信與感知一體化技術

孫春蕾 李琳佩 張海君

孫春蕾, 李琳佩, 張海君. 基于OTFS的下一代車聯網新型通信與感知一體化技術[J]. 工程科學學報, 2023, 45(10): 1674-1683. doi: 10.13374/j.issn2095-9389.2022.12.30.002
引用本文: 孫春蕾, 李琳佩, 張海君. 基于OTFS的下一代車聯網新型通信與感知一體化技術[J]. 工程科學學報, 2023, 45(10): 1674-1683. doi: 10.13374/j.issn2095-9389.2022.12.30.002
SUN Chunlei, LI Linpei, ZHANG Haijun. OTFS-enabled integrated sensing and communication techniques for next-generation V2X networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1674-1683. doi: 10.13374/j.issn2095-9389.2022.12.30.002
Citation: SUN Chunlei, LI Linpei, ZHANG Haijun. OTFS-enabled integrated sensing and communication techniques for next-generation V2X networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1674-1683. doi: 10.13374/j.issn2095-9389.2022.12.30.002

基于OTFS的下一代車聯網新型通信與感知一體化技術

doi: 10.13374/j.issn2095-9389.2022.12.30.002
基金項目: 國家自然科學基金青年基金資助項目(62201032);中國博士后科學基金面上資助項目(2022M720417);中央高校基本科研業務費資助項目(FRF-TP-22-045A1);北京市青年人才托舉工程資助項目(BYESS2023306);國家自然科學基金企業聯合基金資助項目(U22B2003);北京海淀聯合基金資助項目(L212004);中國高校產學研創新基金資助項目(2021FNA05001)
詳細信息
    通訊作者:

    E-mail: zhanghaijun@ustb.edu.cn

  • 中圖分類號: TG142.71

OTFS-enabled integrated sensing and communication techniques for next-generation V2X networks

More Information
  • 摘要: 車聯網借助新一代信息通信技術,實現人、車、路、云等的互聯互通. 未來beyond 5G(B5G)和6G將賦予下一代車聯網更極致的通信與感知性能,有效支撐智能駕駛與智慧交通等創新應用. 然而,車輛高速移動帶來的高多普勒效應,極大地增加了現有正交頻分復用(Orthogonal frequency division multiplexing,OFDM)系統的載波間干擾和導頻開銷,尤其是B5G/6G時代毫米波、太赫茲等高頻段的廣泛應用將進一步加劇這一問題. 近年來,正交時頻空間(Orthogonal time frequency space, OTFS)技術由于在抗時頻雙域選擇性衰落方面的顯著優勢受到了業界的廣泛關注. 基于OTFS實現通信與感知一體化成為了車聯網領域的研究熱點. 本文旨在研究基于OTFS的車聯網通感一體化的系統原理、關鍵技術、應用模式及技術挑戰. 首先,在現有OTFS通信系統的基礎上,探討OTFS通感一體化的系統架構、實現原理以及通信和感知性能. 然后,介紹OTFS技術的國內外研究現狀,并進一步從物理層幀結構、導頻機制等方面討論OTFS通感一體化的難點與關鍵技術. 最后,結合實際場景,分析OTFS在車聯網通感一體化中的應用及面臨的主要挑戰.

     

  • 圖  1  OTFS 通信系統框圖

    Figure  1.  Schematic diagram of the orthogonal time frequency space modulation

    圖  2  單站雷達模式下的OTFS-ISAC系統架構圖

    Figure  2.  System architecture of integrated sensing and communication based on orthogonal time frequency space technique in monostatic radar mode

    圖  3  雙站雷達模式下的OTFS-ISAC系統架構. (a)通信和雷達接收端為不同節點;(b)通信和雷達接收端為同一節點

    Figure  3.  System architecture of the integrated sensing and communication system based on orthogonal time frequency space technique in bistatic radar mode: (a) communication and radar receivers are located at two different nodes; (b) communication and radar receivers are located at the same node

    圖  4  OTFS在V2X-ISAC中的應用示例

    Figure  4.  Application of the orthogonal time frequency space technique in V2X-ISAC

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Tian Y. 11 departments jointly issued “smart vehicles innovative and development strategies”. Intell Connect Veh, 2020(2): 6

    田野. 11部門聯合發布《智能汽車創新發展戰略》. 智能網聯汽車, 2020(2): 6
    [2] Yan S, Peng M G, Wang W B. Integration of communication, sensing and computing: The vision and key technologies of 6G. J Beijing Univ Posts Telecommun, 2021, 44(4): 1

    閆實, 彭木根, 王文博. 通信–感知–計算融合: 6G愿景與關鍵技術. 北京郵電大學學報, 2021, 44(4): 1
    [3] Aydogdu C, Wymeersch H, Rydstr?m M. Can automotive radars form vehicular networks? // 2020 IEEE Radar Conference (RadarConf20). Florence, 2020: 1
    [4] Pan J, Xu J F. Report of automotive electronic industries: The revolution of vehicle networks, high-speed connectors are coming [J/OL]. Tianfeng security (2021-09-01) [2022-12-30]. https://baijiahao.baidu.com/s?id=1709668350571257372&wfr=spider&for=pc

    潘暕, 許俊峰. 汽車電子行業專題報告: 車載網絡變革, 高速連接器迎來春天[J/OL]. 天風證券 (2021-09-01) [2022-12-30]. https://baijiahao.baidu.com/s?id=1709668350571257372&wfr=spider&for=pc
    [5] Ma D Y, Shlezinger N, Huang T Y, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies. IEEE Signal Process Mag, 2020, 37(4): 85 doi: 10.1109/MSP.2020.2983832
    [6] Huang Z, Wang K X, Liu A, et al. Joint pilot optimization, target detection and channel estimation for integrated sensing and communication systems. IEEE Trans Wirel Commun, 2022, 21(12): 10351 doi: 10.1109/TWC.2022.3183621
    [7] Liu F, Cui Y H, Masouros C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond. IEEE J Sel Areas Commun, 2022, 40(6): 1728 doi: 10.1109/JSAC.2022.3156632
    [8] Hadani R, Rakib S, Tsatsanis M, et al. Orthogonal time frequency space modulation // 2017 IEEE Wireless Communications and Networking ConferenceWCNC). San Francisco, 2017: 1
    [9] Surabhi G D, Ramachandran M K, Chockalingam A. OTFS modulation with phase noise in mmWave communications // 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). Kuala Lumpur, 2019: 1
    [10] Wang Z D, Chen X Y, Ning X Y. BER analysis of integrated WFRFT-OTFS waveform framework over static multipath channels. IEEE Commun Lett, 2021, 25(3): 754 doi: 10.1109/LCOMM.2020.3040822
    [11] Zhang H J, Zhang T T, Shen Y. Modulation symbol cancellation for OTFS-based joint radar and communication // 2021 IEEE International Conference on Communications WorkshopsICC Workshops). Montreal, 2021: 1
    [12] Raviteja P, Phan K T, Hong Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation. IEEE Trans Wirel Commun, 2018, 17(10): 6501 doi: 10.1109/TWC.2018.2860011
    [13] Shi D, Wang W J, You L, et al. Deterministic pilot design and channel estimation for downlink massive MIMO-OTFS systems in presence of the fractional Doppler. IEEE Trans Wirel Commun, 2021, 20(11): 7151 doi: 10.1109/TWC.2021.3081164
    [14] Liu C W, Liu S H, Mao Z H, et al. Low-complexity parameter learning for OTFS modulation based automotive radar // 2021 IEEE International Conference on Acoustics, Speech and Signal ProcessingICASSP). Toronto, 2021: 8208
    [15] Yuan W J, Li S Y, Wei Z Q, et al. Bypassing channel estimation for OTFS transmission: An integrated sensing and communication solution // 2021 IEEE Wireless Communications and Networking Conference WorkshopsWCNCW). Nanjing, 2021: 1
    [16] Long H, Wang S, Xu L F, et al. OTFS technology research and prospect. Telecommun Sci, 2021, 37(9): 57 doi: 10.11959/j.issn.1000-0801.2021221

    龍航, 王森, 徐林飛, 等. OTFS技術研究現狀與展望. 電信科學, 2021, 37(9): 57 doi: 10.11959/j.issn.1000-0801.2021221
    [17] Naikoti A, Chockalingam A. Signal detection and channel estimation in OTFS. ZTE Commun, 2021, 19(4): 16
    [18] Xia X G. Comments on “the transmitted signals of OTFS and VOFDM are the same”. IEEE Trans Wirel Commun. 2022, 21(12): 11252
    [19] Gaudio L, Kobayashi M, Caire G, et al. On the effectiveness of OTFS for joint radar parameter estimation and communication. IEEE Trans Wirel Commun, 2020, 19(9): 5951 doi: 10.1109/TWC.2020.2998583
    [20] Liu C W. Research on Mmwave Automotive Integrated Radar and Communication Technology Based on OTFS Modulation [Dissertation]. Nanjing: Southeast University, 2021

    劉晨文. 基于OTFS調制的車載毫米波雷達通信一體化技術研究[學位論文]. 南京: 東南大學, 2021
    [21] Zhao L, Guo W B, Liu Y L, et al. Pilot optimization for OFDM-based OTFS systems over doubly selective channels // 2020 IEEE Global Communications Conference. Taipei, 2020: 1
    [22] Li X H. Research on Interference Localization for Satellite Based on TDOA/FDOA Parameters Measurement [Dissertation]. Changchun: Jilin University, 2007

    李曉虹. 基于時延差和頻移差參數的衛星干擾源定位方法的研究[學位論文]. 長春: 吉林大學, 2007
    [23] Raviteja P, Phan K T, Hong Y, et al. Orthogonal time frequency space (OTFS) modulation based radar system // 2019 IEEE Radar ConferenceRadarConf). Boston, 2019: 1
    [24] Surabhi G D, Augustine R M, Chockalingam A. Peak-to-average power ratio of OTFS modulation. IEEE Commun Lett, 2019, 23(6): 999 doi: 10.1109/LCOMM.2019.2914042
    [25] Naveen C, Sudha V. Peak-to-average power ratio reduction in OTFS modulation using companding technique // 2020 5th International Conference on Devices, Circuits and SystemsICDCS). Coimbatore, 2020: 140
    [26] Xu Z, Li Q, Gong Y. OTFS: A modulation technique for high Doppler spread scenarios. J Xi’an Univ Posts Telecommun, 2021, 26(5): 1 doi: 10.13682/j.issn.2095-6533.2021.05.001

    徐湛, 李青宇, 鞏譯, 等. 正交時頻空: 適用于高多普勒擴展場景的調制技術. 西安郵電大學學報, 2021, 26(5): 1 doi: 10.13682/j.issn.2095-6533.2021.05.001
    [27] Zhao Q M, Li S Q, Tang A M, et al. Energy-efficient reference signal optimization for 5G V2X joint communication and sensing // 2022 IEEE International Conference on Communications. Seoul, 2022: 1040
    [28] Kumari P, Gonzalez-Prelcic N, Heath R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar // 2015 IEEE 82nd Vehicular Technology ConferenceVTC2015-Fall). Boston, 2016: 1
    [29] Kumari P, Vorobyov S A, Heath R W. Adaptive virtual waveform design for millimeter-wave joint communication–radar. IEEE Trans Signal Process, 2019, 68: 715
    [30] Ma D Y, Huang T Y, Liu Y M, et al. A novel joint radar and communication system based on randomized partition of antenna array // 2018 IEEE International Conference on Acoustics, Speech and Signal ProcessingICASSP). Calgary, 2018: 3335
    [31] Wang X R, Hassanien A, Amin M G. Dual-function MIMO radar communications system design via sparse array optimization. IEEE Trans Aerosp Electron Syst, 2019, 55(3): 1213 doi: 10.1109/TAES.2018.2866038
    [32] Kumari P, Eltayeb M E, Heath R W. Sparsity-aware adaptive beamforming design for IEEE 802.11 ad-based joint communication-radar // 2018 IEEE Radar ConferenceRadarConf18). Oklahoma City, 2018: 923
    [33] Kumari P, Choi J, González-Prelcic N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system. IEEE Trans Veh Technol, 2018, 67(4): 3012
    [34] Karpovich P, Zielinski T P. Random-padded OTFS modulation for joint communication and radar/sensing systems // 2022 23rd International Radar SymposiumIRS). Gdansk, 2022: 104
    [35] Liu Y J, Guan Y L, González G D. BEM OTFS receiver with superimposed pilots over channels with Doppler and delay spread // ICC 2022 - IEEE International Conference on Communications. Seoul, 2022: 2411
    [36] Mishra H B, Singh P, Prasad A K, et al. Iterative channel estimation and data detection in OTFS using superimposed pilots // 2021 IEEE International Conference on Communications WorkshopsICC Workshops). Montreal, 2021: 1
    [37] Liu Y J, Guan Y L, David González G. Near-optimal BEM OTFS receiver with low pilot overhead for high-mobility communications. IEEE Trans Commun, 2022, 70(5): 3392 doi: 10.1109/TCOMM.2022.3162257
    [38] Liu F, Masouros C, Petropulu A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead. IEEE Trans Commun, 2020, 68(6): 3834 doi: 10.1109/TCOMM.2020.2973976
    [39] Xu X K, Zhao M M, Lei M, et al. A damped GAMP detection algorithm for OTFS system based on deep learning // 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall). Victoria, 2020: 1
    [40] Han K F, Ko S W, Chae H, et al. Sensing hidden vehicles by exploiting multi-path V2V transmission // 2018 IEEE 88th Vehicular Technology ConferenceVTC-Fall). Chicago, 2018: 1
    [41] Ali A, Gonzalez-Prelcic N, Heath R W, et al. Leveraging sensing at the infrastructure for mmWave communication. IEEE Commun Mag, 2020, 58(7): 84 doi: 10.1109/MCOM.001.1900700
    [42] Liu F, Masouros C. A tutorial on joint radar and communication transmission for vehicular networks—Part II: State of the art and challenges ahead. IEEE Commun Lett, 2021, 25(2): 327 doi: 10.1109/LCOMM.2020.3025339
    [43] Zhang Q X, Sun H Z, Gao X Y, et al. Time-division ISAC enabled connected automated vehicles cooperation algorithm design and performance evaluation. IEEE J Sel Areas Commun, 2022, 40(7): 2206 doi: 10.1109/JSAC.2022.3155506
  • 加載中
圖(4)
計量
  • 文章訪問數:  405
  • HTML全文瀏覽量:  61
  • PDF下載量:  82
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-12-30
  • 網絡出版日期:  2023-04-12
  • 刊出日期:  2023-10-25

目錄

    /

    返回文章
    返回