<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

面向撲翼飛行機器人的飛行控制研究進展綜述

汪婷婷 何修宇 鄒堯 付強 賀威

汪婷婷, 何修宇, 鄒堯, 付強, 賀威. 面向撲翼飛行機器人的飛行控制研究進展綜述[J]. 工程科學學報, 2023, 45(10): 1630-1640. doi: 10.13374/j.issn2095-9389.2022.12.24.001
引用本文: 汪婷婷, 何修宇, 鄒堯, 付強, 賀威. 面向撲翼飛行機器人的飛行控制研究進展綜述[J]. 工程科學學報, 2023, 45(10): 1630-1640. doi: 10.13374/j.issn2095-9389.2022.12.24.001
WANG Tingting, HE Xiuyu, ZOU Yao, FU Qiang, HE Wei. Research progress on the flight control of flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2023, 45(10): 1630-1640. doi: 10.13374/j.issn2095-9389.2022.12.24.001
Citation: WANG Tingting, HE Xiuyu, ZOU Yao, FU Qiang, HE Wei. Research progress on the flight control of flapping-wing aerial vehicles[J]. Chinese Journal of Engineering, 2023, 45(10): 1630-1640. doi: 10.13374/j.issn2095-9389.2022.12.24.001

面向撲翼飛行機器人的飛行控制研究進展綜述

doi: 10.13374/j.issn2095-9389.2022.12.24.001
基金項目: 國家自然科學基金資助項目(62225304, 61933001);北京市自然科學基金資助項目(JQ20026);北京科技大學中央高校基本科研業務費專項資金資助項目(FRF-IDRY-21-030, FRF-TP-22-003C2)
詳細信息
    通訊作者:

    E-mail: weihe@ieee.org

  • 中圖分類號: TP242.6

Research progress on the flight control of flapping-wing aerial vehicles

More Information
  • 摘要: 近十年來,研究人員從飛行生物的飛行機理著手分析,對撲翼飛行機器人的姿態控制、位置控制設計以及系統穩定性分析展開了深入研究,基于魯棒控制、神經網絡等技術,提出了諸多控制方法實現撲翼飛行機器人的自主飛行,其中,姿態控制通過自適應等控制器并結合線性化方法來實現,位置控制則通過搭建層級架構的控制器等方法來完成,并通過設計擾動觀測器等來處理系統的不確定性,以提高系統穩定性能。通過對相關研究工作進行總結,可以看出目前撲翼飛行機器人的飛行控制研究仍大多處于理論階段,還需要進一步結合工程應用中的實際需求,推進撲翼飛行機器人的應用與推廣。最后,探討了撲翼飛行機器人飛行控制未來的研究方向。

     

  • 圖  1  鴿子的一對飛羽間的反作用力隨分離距離的變化[35]

    Figure  1.  Change in the opposing force between the two flight feathers of a pigeon with separation distance[35]

    圖  2  蝴蝶的二維模型圖[38]

    Figure  2.  Two-dimensional butterfly model[38]

    圖  3  撲翼飛行機器人三維氣動力模型[42]

    Figure  3.  Three-dimensional aerodynamic model of the flapping-wing aerial vehicle[42]

    圖  4  仿鳥撲翼飛行機器人的自主著陸[50]

    Figure  4.  Autonomous landing of a bird-like flapping-wing aerial vehicle[50]

    圖  5  撲翼飛行機器人在完成快速躲避動作時的狀態[59]

    Figure  5.  Emergency avoidance of a flapping-wing aerial vehicle[59]

    圖  6  撲翼飛行機器人自主巡航示意圖[65]

    Figure  6.  Autonomous cruise of a flapping-wing aerial vehicle[65]

    圖  7  微型撲翼飛行機器人系統. (a)實物樣機; (b) 微型撲翼飛行機器人關鍵部件以及撲翼旋轉軸示意圖; (c) 滾轉力矩產生示意圖; (d) 俯仰力矩產生示意圖; (e) 偏航力矩產生示意圖[74]

    Figure  7.  Flapping-wing microaerial vehicle: (a) the prototype; (b) critical components of the flapping-wing aerial vehicle; (c) rolling moment; (d) pitching moment; (e) yaw moment[74]

    圖  8  仿生快速規避運動分解,其中機翼顏色表示不同大小的推力命令[76]

    Figure  8.  Decomposition of bionic quick avoidance; wing color represents thrust value[76]

    圖  9  微型撲翼飛行機器人動力學分析. (a) 機體與左翼三維視圖; (b) 撲翼行程平面俯視圖[79]

    Figure  9.  Kinetics of the flapping-wing microaerial vehicle: (a) three-dimensional view of the body and the left wing; (b) top view of the stroke plane[79]

    圖  10  處于狹窄通道中的微型撲翼飛行機器人[83]

    Figure  10.  Flapping-wing microaerial vehicle in a narrow passage[83]

    圖  11  利用光流和運動模型估計姿態. (a) 基于光流的飛行姿態控制方法; (b) 不穩定飛行系統的推力矢量運動模型; (c)所提出的姿態估計方法導致系統輕微的姿態振蕩[87]

    Figure  11.  Attitude estimation using an optical flow and motion model: (a) attitude control based on optical flow; (b) thrust-vectoring motion model of an unstable system; (c) slight oscillation caused by the proposed attitude estimation method[87]

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Muijres F T, Elzinga M J, Melis J M, et al. Flies evade looming targets by executing rapid visually directed banked turns. Science, 2014, 344(6180): 172 doi: 10.1126/science.1248955
    [2] MacKenzie D. A flapping of wings. Science, 2012, 335(6075): 1430 doi: 10.1126/science.335.6075.1430
    [3] Sun M. Insect flight dynamics: Stability and control. Rev Mod Phys, 2014, 86(2): 615 doi: 10.1103/RevModPhys.86.615
    [4] Liang S R, Song B F, Yang W Q, et al. Experimental study on dynamic modeling of flapping wing micro aerial vehicle. Lect Notes Comput Sci, 2017: 602
    [5] Liu J T. Design and Flight Control of a Flapping-Wing Flying Robot with Airfoil [Dissertation]. Harbin: Harbin Institute of Technology, 2018

    劉軍濤. 一種帶翼型撲翼飛行機器人設計及飛行控制研究[學位論文]. 哈爾濱: 哈爾濱工業大學, 2018
    [6] Zou Y. Design, Manufacture and Test of Insect-like Flapping-Wing Micro Air Vehicle [Dissertation]. Shanghai: Shanghai Jiao Tong University, 2018

    鄒陽. 仿昆蟲撲翼微飛行器的設計、制造與測試研究[學位論文]. 上海: 上海交通大學, 2018
    [7] Graule M A, Chirarattananon P, Fuller S B, et al. Perching and takeoff of a robotic insect on overhangs using switchable electrostatic adhesion. Science, 2016, 352(6288): 978 doi: 10.1126/science.aaf1092
    [8] Prum R O. Development and evolutionary origin of feathers. J Exp Zool, 1999, 285(4): 291 doi: 10.1002/(SICI)1097-010X(19991215)285:4<291::AID-JEZ1>3.0.CO;2-9
    [9] Chin D D, Matloff L Y, Stowers A K, et al. Inspiration for wing design: How forelimb specialization enables active flight in modern vertebrates. J R Soc Interface, 2017, 14(131): 20170240 doi: 10.1098/rsif.2017.0240
    [10] Yu M K, Wu P, Widelitz R B, et al. The morphogenesis of feathers. Nature, 2002, 420(6913): 308 doi: 10.1038/nature01196
    [11] Zhang F L, Jiang L, Wang S T. Repairable cascaded slide-lock system endows bird feathers with tear-resistance and superdurability. Proc Natl Acad Sci USA, 2018, 115(40): 10046 doi: 10.1073/pnas.1808293115
    [12] Sullivan T N, Chon M, Ramachandramoorthy R, et al. Reversible attachment with tailored permeability: The feather vane and bioinspired designs. Adv Funct Mater, 2017, 27(39): 1702954 doi: 10.1002/adfm.201702954
    [13] Ravi S, Crall J, Fisher A, et al. Rolling with the flow: Bumblebees flying in unsteady wakes. J Exp Biol, 2013, 216(22): 4299
    [14] Sun M, Liu Y P, Wang J K. Dynamic flight stability of hovering insect: Theoretical analysis and numerical simulation. Acta Aerodynamica Sinica, 2008, 26(z1): 6

    孫茂, 劉彥鵬, 王濟康. 昆蟲懸停飛行的動穩定性: 理論分析與數值模擬. 空氣動力學學報, 2008, 26(z1):6
    [15] Ellington C P, van den Berg C, Willmott A P, et al. Leading-edge vortices in insect flight. Nature, 1996, 384(6610): 626 doi: 10.1038/384626a0
    [16] Sun M, Tang J. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J Exp Biol, 2002, 205(Pt 1): 55
    [17] Beatus T, Guckenheimer J M, Cohen I. Controlling roll perturbations in fruit flies. J R Soc Interface, 2015, 12(105): 20150075 doi: 10.1098/rsif.2015.0075
    [18] Maxworthy T. The formation and maintenance of a leading-edge vortex during the forward motion of an animal wing. J Fluid Mech, 2007, 587: 471 doi: 10.1017/S0022112007007616
    [19] Ramezani A, Chung S J, Hutchinson S. A biomimetic robotic platform to study flight specializations of bats. Sci Robot, 2017, 2(3): eaal2505 doi: 10.1126/scirobotics.aal2505
    [20] Keennon M, Klingebiel K, Won H. Development of the nano hummingbird: A tailless flapping wing micro air vehicle // 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Nashville, 2012: 588
    [21] Gerdes J, Holness A, Perez-Rosado A, et al. Robo raven: A flapping-wing air vehicle with highly compliant and independently controlled wings. Soft Robotics, 2014, 1(4): 275 doi: 10.1089/soro.2014.0019
    [22] Chen Y F, Wang H Q, Helbling E F, et al. A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Sci Robot, 2017, 2(11): eaao5619 doi: 10.1126/scirobotics.aao5619
    [23] Yang W Q, Wang L G, Song B F. Dove: A biomimetic flapping-wing micro air vehicle. Int J Micro Air Veh, 2018, 10(1): 70 doi: 10.1177/1756829317734837
    [24] Chi P C, Zhang W P, Chen W Y, et al. Design and fabrication of an SU-8 biomimetic flapping-wing micro air vehicle by MEMS technology. Robot, 2011, 33(3): 366 doi: 10.3724/SP.J.1218.2011.00366

    遲鵬程, 張衛平, 陳文元, 等. 基于MEMS技術的SU-8仿昆蟲微撲翼飛行器設計及制作. 機器人, 2011, 33(3):366 doi: 10.3724/SP.J.1218.2011.00366
    [25] Ortega-Jimenez V M, Greeter J S M, Mittal R, et al. Hawkmoth flight stability in turbulent vortex streets. J Exp Biol, 2013, 216(Pt 24): 4567
    [26] Seelig J D, Jayaraman V. Feature detection and orientation tuning in the Drosophila central complex. Nature, 2013, 503(7475): 262 doi: 10.1038/nature12601
    [27] Dyhr J P, Morgansen K A, Daniel T L, et al. Flexible strategies for flight control: An active role for the abdomen. J Exp Biol, 2013, 216(Pt 9): 1523
    [28] Vance J T, Faruque I, Humbert J S. Kinematic strategies for mitigating gust perturbations in insects. Bioinspir Biomim, 2013, 8(1): 016004 doi: 10.1088/1748-3182/8/1/016004
    [29] Xu N, Sun M. Lateral dynamic flight stability of a model bumblebee in hovering and forward flight. J Theor Biol, 2013, 319: 102 doi: 10.1016/j.jtbi.2012.11.033
    [30] Pennycuick C. The flight of birds and other animals. Aerospace, 2015, 2(3): 505 doi: 10.3390/aerospace2030505
    [31] Lentink D, Müller U K, Stamhuis E J, et al. How swifts control their glide performance with morphing wings. Nature, 2007, 446(7139): 1082 doi: 10.1038/nature05733
    [32] Crandell K E, Tobalske B W. Aerodynamics of tip-reversal upstroke in a revolving pigeon wing. J Exp Biol, 2011, 214: 1867 doi: 10.1242/jeb.051342
    [33] Hieronymus T L. Flight feather attachment in rock pigeons (Columba livia): Covert feathers and smooth muscle coordinate a morphing wing. J Anat, 2016, 229(5): 631 doi: 10.1111/joa.12511
    [34] Stowers A K, Matloff L Y, Lentink D. How pigeons couple three-dimensional elbow and wrist motion to morph their wings. J R Soc Interface, 2017, 14(133): 20170224 doi: 10.1098/rsif.2017.0224
    [35] Matloff L Y, Chang E, Feo T J, et al. How flight feathers stick together to form a continuous morphing wing. Science, 2020, 367(6475): 293 doi: 10.1126/science.aaz3358
    [36] Dickinson M H, Lehmann F O, Sane S P. Wing rotation and the aerodynamic basis of insect flight. Science, 1999, 284(5422): 1954 doi: 10.1126/science.284.5422.1954
    [37] Whitehead S C, Beatus T, Canale L, et al. Pitch perfect: How fruit flies control their body pitch angle. J Exp Biol, 2015, 218(21): 3508
    [38] Jayakumar J, Senda K, Yokoyama N. Control of pitch attitude by abdomen during forward flight of two-dimensional butterfly. J Aircr, 2018, 55(6): 2327 doi: 10.2514/1.C034767
    [39] Senda K, Obara T, Kitamura M, et al. Modeling and emergence of flapping flight of butterfly based on experimental measurements. Robotics Auton Syst, 2012, 60(5): 670 doi: 10.1016/j.robot.2011.12.007
    [40] Fu Q, Wang J, Gong L, et al. Obstacle avoidance of flapping-wing air vehicles based on optical flow and fuzzy control. Trans Nanjing Univ Aeronaut Astronaut, 2021, 38(2): 206
    [41] Pan E Z, Liu J T, Chen L R, et al. The embedded on-board controller and ground monitoring system of a flapping-wing aerial vehicle // 2018 IEEE International Conference on Real-time Computing and Robotics (RCAR). Kandima, 2019: 72
    [42] Wang T H, Jin S T, Hou Z S. Model free adaptive pitch control of a flapping wing micro aerial vehicle with input saturation // 2020 IEEE 9th Data Driven Control and Learning Systems Conference (DDCLS). Liuzhou, 2020: 627
    [43] Liu M, Ma D X, Li S. Neural dynamics for adaptive attitude tracking control of a flapping wing micro aerial vehicle. Neurocomputing, 2021, 456: 364 doi: 10.1016/j.neucom.2021.05.088
    [44] Li Q W, Duan H J. Modeling and adaptive control for flapping-wing micro aerial vehicle // International Conference on Intelligent Computing. Berlin, 2012: 269
    [45] Hu S B, Lu W H, Zhang X Y, et al. Adaptive fuzzy control of attitude of the flapping-wing micro air vehicles based on backstepping. Comput Simul, 2011, 28(5): 80

    胡盛斌, 陸文華, 張興媛, 等. 微撲翼飛行機器人姿態反演自適應模糊控制. 計算機仿真, 2011, 28(5):80
    [46] Tijmons S, de Croon G C H E, Remes B D W, et al. Obstacle avoidance strategy using onboard stereo vision on a flapping wing MAV. IEEE Trans Robotics, 2017, 33(4): 858 doi: 10.1109/TRO.2017.2683530
    [47] Fu Q, Wang X Q, Zou Y, et al. A miniature video stabilization system for flapping-wing aerial vehicles. Guid Navigat Control, 2022, 2(1): 2250001 doi: 10.1142/S2737480722500017
    [48] Huang H F, He W, Fu Q, et al. A bio-inspired flapping-wing robot with cambered wings and its application in autonomous airdrop. IEEE/CAA J Autom Sin, 2022, 9(12): 2138 doi: 10.1109/JAS.2022.106040
    [49] Fu Q, Zhang S Y, Wang J B, et al. Indoor fixed-height control for bio-inspired flapping-wing aerial vehicles based on offboard monocular vision. Chin J Eng, 2020, 42(2): 249

    付強, 張樹禹, 王久斌, 等. 基于外部單目視覺的仿生撲翼飛行器室內定高控制. 工程科學學報, 2020, 42(2):249
    [50] Liang S R, Song B F, Xuan J L. Active disturbance rejection attitude control for a bird-like flapping wing micro air vehicle during automatic landing. IEEE Access, 2020, 8: 171359 doi: 10.1109/ACCESS.2020.3024793
    [51] He W, Mu X X, Zhang L, et al. Modeling and trajectory tracking control for flapping-wing micro aerial vehicles. IEEE/CAA J Autom Sin, 2020, 8(1): 148
    [52] Rakotomamonjy T, Ouladsine M, Le Moing T. Longitudinal modelling and control of a flapping-wing micro aerial vehicle. Control Eng Pract, 2010, 18(7): 679 doi: 10.1016/j.conengprac.2010.02.002
    [53] Hsiao F Y, Yang L J, Lin S H, et al. Autopilots for ultra lightweight robotic birds: Automatic altitude control and system integration of a sub-10 g weight flapping-wing micro air vehicle. IEEE Control Syst Mag, 2012, 32(5): 35 doi: 10.1109/MCS.2012.2205475
    [54] Torres J Z, Davila J, Lozano R. Attitude and altitude control on board of an ornithopter // 2016 International Conference on Unmanned Aircraft Systems (ICUAS). Arlington, 2016: 1124
    [55] Qian C, Fang Y C. Adaptive tracking control of flapping wing micro-air vehicles with averaging theory. CAAI Trans Intell Technol, 2018, 3(1): 18 doi: 10.1049/trit.2018.0007
    [56] Chandrasekaran B K, Steck J. An adaptive flight control system for A flapping wing aircraft // 2018 AIAA Guidance, Navigation, and Control Conference. Kissimmee, 2018: 1
    [57] Chandrasekaran B K, Steck J E. An adaptive flight control system for a morphing flapping wing aircraft // Advances in Adaptive Control for Aerospace Systems I. Orlando, 2020: 1
    [58] Dietl J, Garcia E. Ornithopter control with periodic infinite horizon controllers. J Guid Control Dyn, 2011, 34(5): 1412 doi: 10.2514/1.52694
    [59] Fei F, Tu Z, Zhang J, et al. Learning extreme hummingbird maneuvers on flapping wing robots // 2019 International Conference on Robotics and Automation (ICRA). New York, 2019: 109
    [60] Xu W F, Pan E Z, Liu J T, et al. Flight control of a large-scale flapping-wing flying robotic bird: System development and flight experiment. Chin J Aeronaut, 2022, 35(2): 235 doi: 10.1016/j.cja.2021.03.009
    [61] Li Y H, Liu J T, Xu H, et al. An autonomous flight control strategy based on human-skill imitation for flapping-wing aerial vehicle // Intelligent Robotics and Applications: 14th International Conference. Yantai, 2021: 34
    [62] Ji B, Zhu Q L, Guo S J, et al. Design and experiment of a bionic flapping wing mechanism with flapping–twist–swing motion based on a single rotation. AIP Adv, 2020, 10(6): 065018 doi: 10.1063/5.0008792
    [63] He W, Liu S P, Huang H F, et al. System design and experiment of an independently driven bird-like flapping-wing robot. Control Theory Appl, 2022, 39(1): 12

    賀威, 劉上平, 黃海豐, 等. 獨立驅動的仿鳥撲翼飛行機器人的系統設計與實驗. 控制理論與應用, 2022, 39(1):12
    [64] Paranjape A A, Chung S J, Kim J. Novel dihedral-based control of flapping-wing aircraft with application to perching. IEEE Trans Robotics, 2013, 29(5): 1071 doi: 10.1109/TRO.2013.2268947
    [65] Roberts L, Bruck H A, Gupta S K. Autonomous loitering control for a flapping wing miniature aerial vehicle with independent wing control // Proceedings of ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Buffalo, 2015: 1
    [66] Roberts L J, Bruck H A, Gupta S K. Modeling of dive maneuvers in flapping wing unmanned aerial vehicles // 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). West Lafayette, 2016: 1
    [67] Banazadeh A, Taymourtash N. Adaptive attitude and position control of an insect-like flapping wing air vehicle. Nonlinear Dyn, 2016, 85(1): 47 doi: 10.1007/s11071-016-2666-8
    [68] Qian C, Fang Y C, Li Y P. Neural network-based hybrid three-dimensional position control for a flapping wing aerial vehicle. IEEE Trans Cybern, 2022, PP(99): 1
    [69] Rifa? H L, Marchand N, Poulin-Vittrant G. Bounded control of an underactuated biomimetic aerial vehicle—Validation with robustness tests. Robotics Auton Syst, 2012, 60(9): 1165 doi: 10.1016/j.robot.2012.05.011
    [70] Mousavi S M S, Pourtakdoust S H. Improved neural adaptive control for nonlinear oscillatory dynamic of flapping wings. J Guid Control Dyn, 2023, 46(1): 97 doi: 10.2514/1.G006478
    [71] Li H, He G P, Bi F G. Sliding-mode adaptive attitude controller design for flapping-wing micro air vehicle. Aerosp Control Appl, 2018, 44(5): 81

    李航, 何廣平, 畢富國. 一類微型撲翼飛行器的滑模自適應姿態控制. 空間控制技術與應用, 2018, 44(5):81
    [72] Wood R J. The first takeoff of a biologically inspired At-scale robotic insect. IEEE Trans Robotics, 2008, 24(2): 341 doi: 10.1109/TRO.2008.916997
    [73] Chen Y F, Zhao H C, Mao J, et al. Controlled flight of a microrobot powered by soft artificial muscles. Nature, 2019, 575(7782): 324 doi: 10.1038/s41586-019-1737-7
    [74] Chirarattananon P, Ma K Y, Wood R J. Adaptive control of a millimeter-scale flapping-wing robot. Bioinspir Biomim, 2014, 9(2): 025004 doi: 10.1088/1748-3182/9/2/025004
    [75] Phan H V, Aurecianus S, Kang T, et al. KUBeetle-S: an insect-like, tailless, hover-capable robot that can fly with a low-torque control mechanism. Int J Micro Air Veh, 2019, 11: 1
    [76] Karásek M, Muijres F T, Wagter C D, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 2018, 361(6407): 1089 doi: 10.1126/science.aat0350
    [77] Jiao Z X, Wang L, Zhao L F, et al. Hover flight control of X-shaped flapping wing aircraft considering wing–tail interactions. Aerosp Sci Technol, 2021, 116: 106870 doi: 10.1016/j.ast.2021.106870
    [78] Dong W Z, Wang Z D. Indirect control and design of insect-like flapping-wing micro aerial vehicle // 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing, 2017: 1257
    [79] Deng X Y, Schenato L, Sastry S S. Flapping flight for biomimetic robotic insects: Part II-flight control design. IEEE Trans Robotics, 2006, 22(4): 789 doi: 10.1109/TRO.2006.875483
    [80] Helps T, Romero C, Taghavi M, et al. Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping. Sci Robot, 2022, 7(63): eabi8189 doi: 10.1126/scirobotics.abi8189
    [81] Huang H F, He W, Zou Y, et al. System design and control of flapping-wing flying robot imitating butterfly based on wire-driven steering. Control Theory Appl, 2022, 39(7): 1203

    黃海豐, 賀威, 鄒堯, 等. 基于線驅轉向的仿蝴蝶撲翼飛行機器人系統設計與控制. 控制理論與應用, 2022, 39(7):1203
    [82] Phan H V, Park H C. Mechanisms of collision recovery in flying beetles and flapping-wing robots. Science, 2020, 370(6521): 1214 doi: 10.1126/science.abd3285
    [83] Tu Z, Fei F, Zhang J, et al. Acting is seeing: Navigating tight space using flapping wings // 2019 International Conference on Robotics and Automation (ICRA). Montreal, 2019: 95
    [84] Peng K M, Lin F, Chen B M. Modeling and control analysis of a flapping-wing micro aerial vehicle // 2017 13th IEEE International Conference on Control & Automation (ICCA). Ohrid, 2017: 295
    [85] Ma K Y, Chirarattananon P, Fuller S B, et al. Controlled flight of a biologically inspired, insect-scale robot. Science, 2013, 340(6132): 603 doi: 10.1126/science.1231806
    [86] Fuller S B, Karpelson M, Censi A, et al. Controlling free flight of a robotic fly using an onboard vision sensor inspired by insect ocelli. J R Soc Interface, 2014, 11(97): 20140281 doi: 10.1098/rsif.2014.0281
    [87] Croon G C H E, Dupeyroux J J G, Wagter C D, et al. Accommodating unobservability to control flight attitude with optic flow. Nature, 2022, 610(7932): 485 doi: 10.1038/s41586-022-05182-2
    [88] He W, Sun C Y. Design of Flapping-wing Flying Robot System. Beijing: Chemical Industry Press, 2019

    賀威, 孫長銀. 撲翼飛行機器人系統設計. 北京: 化學工業出版社, 2019
    [89] He W, Tang X Y, Wang T T, et al. Trajectory tracking control for a three-dimensional flexible wing. IEEE Trans Control Syst Technol, 2022, 30(5): 2243 doi: 10.1109/TCST.2021.3139087
    [90] Paranjape A A, Guan J Y, Chung S J, et al. PDE boundary control for flexible articulated wings on a robotic aircraft. IEEE Trans Robotics, 2013, 29(3): 625 doi: 10.1109/TRO.2013.2240711
    [91] Paranjape A A, Chung S J, Hilton H H, et al. Dynamics and performance of tailless micro aerial vehicle with flexible articulated wings. AIAA J, 2012, 50(5): 1177 doi: 10.2514/1.J051447
    [92] Lhachemi H, Saussié D, Zhu G C. Boundary feedback stabilization of a flexible wing model under unsteady aerodynamic loads. Automatica, 2018, 97: 73 doi: 10.1016/j.automatica.2018.07.029
    [93] Chen W Y, Zhang W P. Micro Flapping-wing Bionic Aircraft. Shanghai: Shanghai Jiao Tong University Press, 2010

    陳文元, 張衛平. 微型撲翼式仿生飛行器. 上海: 上海交通大學出版社, 2010
    [94] Jafferis N T, Helbling E F, Karpelson M, et al. Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 2019, 570(7762): 491 doi: 10.1038/s41586-019-1322-0
    [95] Caetano J V, Percin M, Visser C C, et al. Tethered vs. free flight force determination of the DelFly II Flapping Wing Micro Air Vehicle // 2014 International Conference on Unmanned Aircraft Systems (ICUAS). Orlando, 2014: 942
  • 加載中
圖(11)
計量
  • 文章訪問數:  288
  • HTML全文瀏覽量:  63
  • PDF下載量:  43
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-12-24
  • 網絡出版日期:  2023-02-11
  • 刊出日期:  2023-10-25

目錄

    /

    返回文章
    返回