<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

粗骨料及混雜纖維對UHPC力學性能的影響

Effect of coarse aggregates and hybrid fibers on mechanical properties of ultra high performance concrete

  • 摘要: 為評議粗骨料超高性能混凝土(CA–UHPC)的基體配合比設計方法及探究混雜纖維對其力學性能的影響,基于修正的安德森(MAA)模型提出CA–UHPC基體配合比的兩種設計思路,對不同粗骨料體積摻量(10%,12%,14%,17%)及混雜纖維形式(平直鋼纖維、端鉤鋼纖維、共聚甲醛(POM)纖維)的CA–UHPC開展軸拉試驗、抗壓強度及工作性能測試及微觀結構分析. 結果表明:采用MAA模型計算CA–UHPC的基體配合比,不論是否將粗骨料引入計算體系,均可實現CA–UHPC的緊密堆積狀態,兩種思路設計的CA–UHPC中粗骨料–UHPC基體界面及纖維–UHPC基體界面的粘結強度均較高;制備的混雜纖維CA–UHPC可實現工作性能與軸拉韌性的協同提升,其中平直鋼纖維與端鉤鋼纖維混雜的CA–UHPC具備更優異的軸拉韌性,平直鋼纖維與POM纖維混雜的CA–UHPC具備更優異的工作性能;拔出的POM纖維表面存在較多的細長絮狀物,說明POM纖維對CA–UHPC軸拉韌性提升的機理為優異的化學粘結作用.

     

    Abstract: The development direction of ultra high performance concrete (UHPC) is shifting toward realizing a balance between its comprehensive properties, such as low cost, high mechanical performance, and environmental friendliness, in a bid to facilitate its large-scale application. Accordingly, coarse aggregate UHPC (CA–UHPC) has recently attracted considerable attention from academia and engineering. CA–UHPC has a satisfactory application prospect in long-span lightweight composite bridges, wet joints of bridges, and other fields. Two concepts of the CA–UHPC matrix mix design are proposed based on the modified Andreasen & Andersen (MAA) model to evaluate the accuracy of the mix design method for the CA–UHPC matrix and the effect of fiber hybrid on the mechanical properties of CA–UHPC are explored. Subsequently, direct tensile tests, compressive strength and workability measurements, and microstructural analysis are conducted on CA–UHPC with different CA volume fractions (10%, 12%, 14%, and 17%) and fiber hybrid types (Straight steel fiber, hook-end steel fiber, and copolymeraldehyde (POM) fiber). The influence rules of CA volume fractions and fiber hybrid types on the tensile stress–strain curves, tensile toughness ratios, cubic compressive strength, and slump flow of CA–UHPC are revealed. A fiber image analyzer (microscope) is used for observing microstructures of the CA–UHPC matrix and fibers. The test results demonstrate that a dense particle packing skeleton of CA–UHPC can be realized via the MAA model, irrespective of the inclusion of CAs. The interfacial bond behavior between the CA and UHPC matrix and that between the fiber and UHPC matrix are concluded to be excellent for CA–UHPC designed using the two concepts of the MAA model based on the interfacial microstructural analysis. Additionally, the prepared CA–UHPC with hybrid fibers can achieve the synergistic improvement of workability and tensile toughness. CA–UHPC with the hybrid type of straight steel and hook-end steel fibers exhibits more considerable tensile toughness, while CA–UHPC that with the hybrid type of straight steel and POM fibers shows superior workability. The surface morphology of the POM fiber pulled out from the UHPC matrix shows that some slender flocs exist on the POM fiber surface, corresponding to several curly filaments scraped and torn from the POM fiber to release the tensile stress during the drawing process. This indicates that the action mechanism of POM fibers on the tensile toughness enhancement of CA–UHPC is the effective chemical bond behavior between the POM fiber and the CA–UHPC matrix. Relative research achievements on the mechanical properties of hybrid fiber CA–UHPC in this paper provide data support for the optimal design of the CA–UHPC matrix mix and establish a theoretical foundation for improving the toughness of CA–UHPC.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164