<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

工業無源光網絡物理層關鍵技術及發展趨勢

霍佳皓 張曉營 高凱強 皇甫偉 隆克平

霍佳皓, 張曉營, 高凱強, 皇甫偉, 隆克平. 工業無源光網絡物理層關鍵技術及發展趨勢[J]. 工程科學學報, 2023, 45(10): 1641-1652. doi: 10.13374/j.issn2095-9389.2022.12.14.001
引用本文: 霍佳皓, 張曉營, 高凱強, 皇甫偉, 隆克平. 工業無源光網絡物理層關鍵技術及發展趨勢[J]. 工程科學學報, 2023, 45(10): 1641-1652. doi: 10.13374/j.issn2095-9389.2022.12.14.001
HUO Jiahao, ZHANG Xiaoying, GAO Kaiqiang, HUANGFU Wei, LONG Keping. Key technologies and trends in the development of industrial passive optical networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1641-1652. doi: 10.13374/j.issn2095-9389.2022.12.14.001
Citation: HUO Jiahao, ZHANG Xiaoying, GAO Kaiqiang, HUANGFU Wei, LONG Keping. Key technologies and trends in the development of industrial passive optical networks[J]. Chinese Journal of Engineering, 2023, 45(10): 1641-1652. doi: 10.13374/j.issn2095-9389.2022.12.14.001

工業無源光網絡物理層關鍵技術及發展趨勢

doi: 10.13374/j.issn2095-9389.2022.12.14.001
基金項目: 國家重點研發計劃資助項目( 2021YFB2900801);國家自然科學基金資助項目(62201033, U22A2005);中國通信學會青年人才托舉工程(2021QNRC001);廣東省基礎與應用基礎研究基金聯合基金?青年基金資助項目(2020A1515111047);青年教師國際交流成長計劃(QNXM20220039)
詳細信息
    通訊作者:

    E-mail: huojiahao@ustb.edu.cn

  • 中圖分類號: TN911

Key technologies and trends in the development of industrial passive optical networks

More Information
  • 摘要: 隨著工業互聯網的不斷發展,工業無源光網絡(Passive optical network,PON)引起了工業界和學術界的共同關注. 為應對工業互聯網多樣化場景應用的不同特點,工業PON需滿足超高速率、超大連接和低成本的需求,物理層調制格式、復用方式、傳輸方案、數字信號處理算法等一直是該領域的研究熱點. 首先介紹了PON的基本概念,回顧了PON的標準化歷程,重點對PON物理層傳輸方案及關鍵技術進行梳理,包含強度調制技術、多維復用技術和數字均衡技術的研究進展. 然后,提出了適用于工業PON傳輸的偏振復用強度調制相干檢測系統方案,在仿真平臺上分別測試了四電平脈沖幅度調制和開關鍵控調制兩種調制格式在背靠背和20 km傳輸距離的單模光纖中的傳輸性能,驗證了該方案的優越性. 最后,對工業PON的物理層發展趨勢進行展望.

     

  • 圖  1  簡化的相干系統方案. (a) IQ交錯檢測接收機架構;(b)自零差相干系統架構

    Figure  1.  Simplified coherent system scheme: (a) configuration of the IQ-interleaved coherent detection scheme; (b) configuration of the self-homodyne coherent scheme

    Notes: ADC is analog to digital converter; ECW(t) is field of continuous wave; ES(t) is field of signal; ELO(t) is field of local oscillator; RX is receiver.

    圖  2  FLCS-PON在大范圍PON中的實現圖

    Figure  2.  Implementation diagram of the FLCS-PON in a large-scale PON

    圖  3  傳統PON與FLCS-PON比較[26]

    Figure  3.  Comparison of traditional PON with FLCS-PON [26]

    Notes: DRNRP is dynamic-range and net-rate product; CPON is coherent passive optical network.

    圖  4  基于多芯光纖的上下行傳輸方案

    Figure  4.  Scheme of upstream and downstream transmissions over a multicore fiber

    Notes: MCF is multi-core fiber

    圖  5  文獻[44]和[47]中有無SOA的結果比較. (a)文獻[44]; (b)文獻[47]

    Figure  5.  Comparison of the results with and without SOA: (a) in reference [44]; (b) in reference [47]

    Notes: BER—Bit error ratio; OMA—Optical modulation amplitude; btb—back to back; w/—with; w/o—without

    圖  6  突發模式接收機結構

    Figure  6.  Configuration of the burst mode receiver

    Notes: AGC-EDFA is automatic gain controlled erbium-doped fiber amplifier; ALC is automatic level control; ICR is integrated coherent receiver.

    圖  7  上行突發模式DSP框圖

    Figure  7.  Block diagram of digital signal processing in the burst mode of transmission

    Notes: SOP is state of polarization

    圖  8  偏振復用相干探測系統實驗設置

    Figure  8.  Experimental setup of PDM-PAM4 with the coherent system

    Notes: PBS is polarization beam splitter; AWG is arbitrary-waveform generator; PBC is polarization beam combiner

    圖  9  下行DSP處理框圖

    Figure  9.  Offline DSP blocks of signal recovery

    圖  10  BER與信號接收光功率的關系曲線圖. (a) 50 Gbit·s?1 NRZ; (b) 50 Gbit·s?1 PAM 4; (c) 100 Gbit·s?1 NRZ; (d) 100 Gbit·s?1PAM 4

    Figure  10.  BER as a function of the received optical power: (a) 50 Gbit·s?1 NRZ; (b) 50 Gbit·s?1 PAM 4; (c) 100 Gbit·s?1 NRZ; (d) 100 Gbit·s?1 PAM 4

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] ITU-T Study Group 15. ITU-T Recommendation G. 983 Series Broadband Passive Optical Network. Geneva: ITU-T Study Group 15, 2005
    [2] Kramer G, Pesavento G. Ethernet passive optical network (EPON): Building a next-generation optical access network. IEEE Commun Mag, 2002, 40(2): 66 doi: 10.1109/35.983910
    [3] ITU-T Study Group 15. ITU-T Recommendation G. 984 Series Gigabit Capable Passive Optical Network (G-PON) . Geneva: ITU-T Study Group 15, 2008
    [4] Bonk R, Geng D, Khotimsky D, et al. 50G-PON: The first ITU-T higher-speed PON system. IEEE Commun Mag, 2022, 60(3): 48 doi: 10.1109/MCOM.001.2100441
    [5] ITU-T Study Group 15. ITU-T Recommendation G. 987 Series 10 Gigabit Capable Passive Optical Network (XG-PON) . Geneva: ITU-T Study Group 15, 2016
    [6] IEEE Computer Society. IEEE 802.3av-2009 CSMA/CD Access Method and Physical Layer Specifications Amendment 1: Physical Layer Specifications and Management Parameters for 10 Gb/s Passive Optical Networks. New York: IEEE, 2009
    [7] ITU-T Study Group 15. ITU-T Recommendation G. 9807 Series 10 Gigabit Capable Symmetric Passive Optical Network (XGS-PON). Geneva: ITU-T Study Group 15, 2016
    [8] ITU-T Study Group 15. ITU-T Recommendation G. 989 Series 40-Gigabit-capable Passive Optical Networks (NG-PON2): General Requirements. Geneva: ITU-T Study Group 15, 2013
    [9] Zhou Q Y, Zhang J, Zhu M, et al. Performance comparison of advanced modulation formats for low-bandwidth optics-based 50-Gb/s/λ PON at O-band // International Conference on Optical Communications and Networks. Qufu, 2021: 1
    [10] Matsushita A, Nakamura M, Yamamoto S, et al. 41-Tbps C-Band WDM transmission with 10-bps/Hz spectral efficiency using 1-Tbps/λ signals. J Light Technol, 2020, 38(11): 2905
    [11] Xin H Y, Kong D M, Zhang K, et al. 100 GBPS simplified coherent PON using carrier-suppressed PDM-PAM-4 and phase-recovery-free KK detection // 45th European Conference on Optical Communication (ECOC 2019). Dublin, 2019: 1
    [12] Xin H Y, Zhang X L, Kong D M, et al. Carrier-recovery-free KK detection for PDM-bipolar-PAM in 100 Gb/s simplified coherent PON // Optical Fiber Communication Conference. San Francisco, 2021: F2H. 4
    [13] Zhang J, Yu J J, Li X Y, et al. 200 Gbit/s/λ PDM-PAM-4 PON system based on intensity modulation and coherent detection. J Opt Commun Netw, 2020, 12(1): A1 doi: 10.1364/JOCN.12.0000A1
    [14] Wang H Y, Torres-Ferrera P, Rizzelli G, et al. 200 Gbps/λ PON downstream C-band direct-detection links with≥ 29 dB power budget. Appl Sci, 2022, 12(7): 3538 doi: 10.3390/app12073538
    [15] Wei J L, Rahman T, Calabrò S, et al. Experimental demonstration of advanced modulation formats for data center networks on 200 Gb/s lane rate IMDD links. Opt Express, 2020, 28(23): 35240 doi: 10.1364/OE.409905
    [16] Kanai T, Fujiwara M, Igarashi R, et al. Symmetric 10 Gbit/s 40-km reach DSP-based TDM-PON with a power budget over 50 dB. Opt Express, 2021, 29(11): 17499 doi: 10.1364/OE.421917
    [17] Kanai T, Koma R, Kani J I, et al. Future long-reach optical access network with digital coherent technologies // Conference on Lasers and Electro-Optics. San Jose, 2021: STh1I. 5
    [18] Faruk M S, Li X, Nesset D, et al. Coherent passive optical networks: Why, when, and how. IEEE Commun Mag, 2021, 59(12): 112 doi: 10.1109/MCOM.010.2100503
    [19] Taylor M G. Coherent detection method using DSP for demodulation of signal and subsequent equalization of propagation impairments. IEEE Photonics Technol Lett, 2004, 16(2): 674 doi: 10.1109/LPT.2003.823106
    [20] Li Z X, Yin F, Huang X G, et al. Demonstration of a 50G-PON with a 45-dB power budget using an IQ-interleaved coherent detection scheme. Opt Express, 2021, 29(20): 32523 doi: 10.1364/OE.435034
    [21] Gui T, Wang X F, Tang M, et al. Real-time demonstration of homodyne coherent bidirectional transmission for next-generation data center interconnects. J Light Technol, 2021, 39(4): 1231 doi: 10.1109/JLT.2021.3052826
    [22] Zhang R, Chen Y W, Kuzmin K, et al. Intra-data center 120Gbaud/DP-16QAM self-homodyne coherent links with simplified coherent DSP // Optical Fiber Communication Conference. San Diego, 2022: W1G. 1
    [23] Li B R, Nesset D, Liu D K, et al. DSP enabled next generation flexible PON for 50G and beyond // Optical Fiber Communication Conference. San Diego, 2022: M3G. 1
    [24] Houtsma V E, van Veen D T. Investigation of modulation schemes for flexible line-rate high-speed TDM-PON. J Light Technol, 2020, 38(12): 3261
    [25] Lee J, Dong P, Kaneda N, et al. Discrete multi-tone transmission for short-reach optical connections // 2016 Optical Fiber Communication Conference and Exhibition (OFC). Anaheim, 2016: 1
    [26] Xing S Z, Li G Q, Chen J, et al. First demonstration of PS-QAM based flexible coherent PON in burst-mode with 300G peak-rate and record dynamic-range and net-rate product up to 7, 104 dB·Gbps // Optical Fiber Communications Conference. San Diego, 2022: 1
    [27] Liang W X, Wang H D, Wei J L, et al. DSP-enabled 50G OOK-PON with beyond 29 dB power budget using O-band 10G DML and 10G APD. Opt Commun, 2022, 504: 127486 doi: 10.1016/j.optcom.2021.127486
    [28] Wu X, Zhang J W, Lau A P T, et al. Low-complexity absolute-term based nonlinear equalizer with weight sharing for C-band 85-GBaud OOK transmission over a 100-km SSMF. Opt Lett, 2022, 47(6): 1565 doi: 10.1364/OL.454715
    [29] Wang W, Zou D D, Wang X W, et al. 100 Gbit/s/λ DMT-PON system based on intensity modulation and heterodyne coherent detection. IEEE Photonics Technol Lett, 2021, 33(18): 1014 doi: 10.1109/LPT.2021.3079982
    [30] Zhang J, Liu Q, Zhu M Y, et al. Beyond 200-Gb/s/λ DMT signal transmission with NGMI optimization and volterra equalization. J Light Technol, 2021, 39(18): 5837 doi: 10.1109/JLT.2021.3093910
    [31] Le S T, Drenski T, Hills A, et al. Real-time 100 Gb/s IM/DD DMT with chirp managed laser supporting 400 Gb/CWDM-4 over 20 km // Optical Fiber Communications Conference. San Diego, 2022: 1
    [32] Liang S Y, Jiang Z H, Qiao L, et al. Faster-than-nyquist precoded CAP modulation visible light communication system based on nonlinear weighted look-up table predistortion. IEEE Photonics J, 2018, 10(1): 1
    [33] van Veen D T, Houtsma V E. Flexible 50G PON based on multi-rate PAM and CAP-4 with user interleaving // 45th European Conference on Optical Communication. Dublin, 2019: 1
    [34] Izquierdo D, Altabas J A, Clemente J, et al. Flexible resource provisioning of coherent PONs based on non-orthogonal multiple access and CAP signals // 45th European Conference on Optical Communication (ECOC 2019). Dublin, 2019: 1
    [35] Zhang J, Zhu M, Wang K H, et al. The best modulation format for symmetrical single-wavelength 50-Gb/s PON at O-band: PAM, CAP or DMT? // Optical Fiber Communication Conference. San Francisco, 2021: W1H. 3
    [36] Mazur M, Dallachiesa L, Fontaine N K, et al. Real-time transmission over 2x55 km all 7-core coupled-core multi-core fiber link // Optical Fiber Communication Conference. San Diego, 2022: Th4A. 1
    [37] Diamantopoulos N P P, Nishi H, Fujii T, et al. 4× 56-GBaud PAM-4 SDM transmission over 5.9-km 125-µm-cladding MCF using III-V-on-Si DMLs // 2020 Optical Fiber Communications Conference. San Diego, 2020: 1
    [38] Mazur M, Ryf R, Fontaine N K, et al. Real-time MIMO transmission over field-deployed coupled-core multi-core fibers // Optical Fiber Communication Conference. San Diego, 2022: Th4B. 8
    [39] Feng Z H, Xu L, Wu Q, et al. Ultra-high capacity WDM-SDM optical access network with self-homodyne detection downstream and 32QAM-FBMC upstream. Opt Express, 2017, 25(6): 5951 doi: 10.1364/OE.25.005951
    [40] Zhang K, Zhuge Q B, Xin H Y, et al. Design and analysis of high-speed optical access networks in the O-band with DSP-free ONUs and low-bandwidth optics. Opt Express, 2018, 26(21): 27873 doi: 10.1364/OE.26.027873
    [41] Bi M H, Xiao S L, Yi L L, et al. Power budget improvement of symmetric 40-Gb/s DML-based TWDM-PON system. Opt Express, 2014, 22(6): 6925 doi: 10.1364/OE.22.006925
    [42] Zhang K, Zhuge Q B, Xin H Y, et al. Demonstration of 50 Gb/s/λ symmetric PAM4 TDM-PON with 10 G-class optics and DSP-free ONUs in the O-band // 2018 Optical Fiber Communication Conference. San Diego, 2018: M1B. 5
    [43] Rosales R, Cano I, Nesset D, et al. Achieving high budget classes in the downstream link of 50 G-PON. J Opt Commun Netw, 2021, 13(8): D13 doi: 10.1364/JOCN.426009
    [44] Rosales R, Cano I N, Nesset D, et al. 50G-PON downstream link up to 40 km with a 1342 nm integrated EML+ SOA. IEEE Photonics Technol Lett, 2022, 34(6): 306 doi: 10.1109/LPT.2022.3152608
    [45] Zhang J, Yu J J, Wey J S, et al. SOA pre-amplified 100 Gb/s/λ PAM-4 TDM-PON downstream transmission using 10 Gbps O-band transmitters. J Light Technol, 2020, 38(2): 185 doi: 10.1109/JLT.2019.2944558
    [46] Li J H, Lin B J, He Y Q, et al. DSP-enhanced TWDM-PON with DSB modulation towards 100-GB/S // 2014 13th International Conference on Optical Communications and Networks (ICOCN). Suzhou, 2014: 1
    [47] Li Z X, Li Y W, Luo S Y, et al. SOA amplified 100 Gb/s/λ PAM-4 TDM-PON supporting PR-30 power budget with> 18 dB dynamic range. Micromachines, 2022, 13(3): 342 doi: 10.3390/mi13030342
    [48] Wang K H, Zhang J, Zhao L, et al. Mitigation of pattern-dependent effect in SOA at O-band by using DSP. J Light Technol, 2019, 38(3): 590
    [49] Torres-Ferrera P, Wang H Y, Ferrero V, et al. 100 Gbps/λ PON downstream O-and C-band alternatives using direct-detection and linear-impairment equalization. J Opt Commun Netw, 2021, 13(2): A111 doi: 10.1364/JOCN.402437
    [50] Xiang M, Fu S N, Xu O, et al. Advanced DSP enabled C-Band 112 Gbit/s/λ PAM-4 transmissions with severe bandwidth-constraint. J Light Technol, 2021, 40(4): 987
    [51] Zhang J, Wang K H, Wei Y R, et al. Symmetrical 50-Gb/s/λ PAM-4 TDM-PON at O-band supporting 26 dB+ loss budget using low-bandwidth optics and semiconductor optical amplifier // Optical Fiber Communication Conference. San Diego, 2020: Th1B. 3
    [52] Xue L, Yi L L, Li P X, et al. 50-Gb/s TDM-PON based on 10G-class devices by optics-simplified DSP // 2018 Optical Fiber Communications Conference and Exposition (OFC). San Diego, 2018: 1
    [53] Tang X Z, Qiao Y J, Chen Y W, et al. Digital pre-and post-equalization for C-band 112-Gb/s PAM4 short-reach transport systems. J Light Technol, 2020, 38(17): 4683 doi: 10.1109/JLT.2020.2993997
    [54] Huang L Y, Xu Y X, Jiang W Q, et al. Performance and complexity analysis of conventional and deep learning equalizers for the high-speed IMDD PON. J Light Technol, 2022, 40(14): 4528 doi: 10.1109/JLT.2022.3165529
    [55] Chen X, Antonelli C, Chandrasekhar S, et al. Kramers–Kronig receivers for 100-km datacenter interconnects. J Light Technol, 2018, 36(1): 79 doi: 10.1109/JLT.2018.2793460
    [56] Lu D X, Boateng B, Zhou X, et al. High-speed PON downstream transmission based on pre-configured KK scheme with CD pre-compensation and direct detection. Opt Commun, 2022, 510: 127906 doi: 10.1016/j.optcom.2022.127906
    [57] Tao M H, Zheng J Y, Dong X L, et al. Improved dispersion tolerance for 50G-PON downstream transmission via receiver-side equalization // Optical Fiber Communication Conference. San Diego, 2019: M2B. 3
    [58] Wang H Y, Torres-Ferrera P, Rizzelli G, et al. 100 Gbps/λ C-band CD digital pre-compensated and direct-detection links with simple non-linear compensation. IEEE Photonics J, 2021, 13(4): 1
    [59] Li B R, Zhang K, Zhang D C, et al. DSP enabled next generation 50G TDM-PON. J Opt Commun Netw, 2020, 12(9): D1 doi: 10.1364/JOCN.391904
    [60] Xi Y, Bi M H, Miao X, et al. A modified Volterra equalizer for compensation distortion in C-band DML-based short reach limited-bandwidth system with 80-Gb/s PAM-4 signals. Opt Commun, 2022, 513: 128105 doi: 10.1016/j.optcom.2022.128105
    [61] Xue L, Lin R, Van Kerrebrouck J, et al. 100G PAM-4 PON with 34 dB power budget using joint nonlinear tomlinson-harashima precoding and Volterra equalization // European Conference on Optical Communication (ECOC). Bordeaux, 2021: 1
    [62] Yang C W, Ye T, Zhang K, et al. A simple and accurate method to estimate the nonlinear performance of VCSEL IM-DD system // 2022 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, 2022: 1
    [63] Kaneda N, Lee J, Chen Y K. Nonlinear equalizer for 112-Gb/s SSB-PAM4 in 80-km dispersion uncompensated link. // Optical Fiber Communication Conference, 2017: Tu2D. 5
    [64] Cho J, Le S T. Volterra equalization to compensate for transceiver nonlinearity: Performance and pitfalls. // 2022 Optical Fiber Communications Conference and Exhibition (OFC), 2022: 1
    [65] Reza A G, Rhee J K K. Blind nonlinearity mitigation of 10G DMLs using sparse Volterra equalizer in IM/DD PAM-4 transmission systems. Opt Fiber Technol, 2020, 59: 102322 doi: 10.1016/j.yofte.2020.102322
    [66] Chan D W U, Zhou G, Wu X, et al. A compact 112-Gbaud PAM-4 silicon photonics transceiver for short-reach interconnects. J Light Technol, 2022, 40(8): 2265 doi: 10.1109/JLT.2022.3141906
    [67] Li G Q, Li Z Y, Ha Y, et al. Performance assessments of joint linear and nonlinear pre-equalization schemes in next generation IM/DD PON. J Light Technol, 2022, 40(16): 5478 doi: 10.1109/JLT.2022.3180589
    [68] Batista E L O, Seara R. On the performance of adaptive pruned Volterra filters. Signal Process, 2013, 93(7): 1909 doi: 10.1016/j.sigpro.2013.02.003
    [69] Kuech F, Kellermann W. Orthogonalized power filters for nonlinear acoustic echo cancellation. Signal Process, 2006, 86(6): 1168 doi: 10.1016/j.sigpro.2005.09.014
    [70] Li J C, Wang Z, Li X F, et al. Single-span IM/DD transmission over 120-km SMF with a silicon photonic mach-zehnder modulator and THP // Optical Fiber Communication Conference. San Diego, 2022: M2H. 3
    [71] Zhang J W, Yu J J, Shi J Y, et al. 64-Gb/s/A downstream transmission for PAM-4 TDM-PON with centralized DSP and 10G low-complexity receiver in C-band // 2017 European Conference on Optical Communication (ECOC). Gothenburg, 2017: 1
    [72] Luo S Y, Li Z X, Qu Y Z, et al. 112-Gb/s/λ downstream transmission for TDM-PON with 31-dB power budget using 25-Gb/s optics and simple DSP in ONU // Optical Fiber Communication Conference. San Diego, 2020: Th3K. 4
    [73] An S H, Li J C, Li X F, et al. FTN SSB 16-QAM signal transmission and direct detection based on tomlinson-harashima precoding with computed coefficients. J Light Technol, 2021, 39(7): 2059 doi: 10.1109/JLT.2020.3046717
    [74] Zhu Y X, Wu Q, Yin L J, et al. Faster-than-nyquist subcarrier modulation utilizing digital brick-wall filter-based THP for band-limited DML-DD systems // 2021 European Conference on Optical Communication (ECOC). Bordeaux, 2021: 1
    [75] Liu Q, Du H Q, Wu X L. A band-limited receiver technology based on PAM4 modulation for the short distance optical transmission system. Telecommun Sci, 2018, 34(3): 118

    劉群, 杜慧琴, 吳香林. 短距光傳輸系統中基于PAM4調制的帶限接收技術. 電信科學, 2018, 34(3):118
    [76] Li F, Luo Z B, Yin M Z, et al. Architectures and key DSP techniques of next generation passive optical network (PON) // 2022 Optical Fiber Communications Conference and Exhibition (OFC). San Diego, 2022: 1
    [77] B?cherer G, Steiner F, Schulte P. Bandwidth efficient and rate-matched low-density parity-check coded modulation. IEEE Trans Commun, 2015, 63(12): 4651 doi: 10.1109/TCOMM.2015.2494016
    [78] Zhang S L, Yaman F. Constellation design with geometric and probabilistic shaping. Opt Commun, 2018, 409: 7 doi: 10.1016/j.optcom.2017.08.063
    [79] Li X Y, Yu J J, Zhao L, et al. 1-Tb/s photonics-aided vector millimeter-wave signal wireless delivery at D-band // 2018 Optical Fiber Communications Conference and Exposition (OFC). San Diego, 2018: 1
    [80] Jia S, Zhang L, Wang S W, et al. 2×300 Gbit/s line rate PS-64QAM-OFDM THz photonic-wireless transmission. J Light Technol, 2020, 38(17): 4715 doi: 10.1109/JLT.2020.2995702
    [81] Zhao L, Sang B H, Shi J T, et al. Demonstration of 74.7 Gbit/s 4096QAM OFDM E-band wireless delivery over 700 m employing advanced DSP // Optical Fiber Communication Conference. San Diego, 2022: M1C. 1
    [82] Yu Y K, Choi M R, Bo T W, et al. Low-complexity second-order Volterra equalizer for DML-based IM/DD transmission system. J Light Technol, 2019, 38(7): 1735
    [83] Zhang Q W, Duan S H, Wang Z C, et al. Low complexity Volterra nonlinear equalizer based on weight sharing for 50 Gb/s PAM4 IM/DD transmission with 10G-class optics. Opt Commun, 2022, 508: 127762 doi: 10.1016/j.optcom.2021.127762
    [84] Diamantopoulos N P, Nishi H, Kobayashi W, et al. On the complexity reduction of the second-order Volterra nonlinear equalizer for IM/DD systems. J Light Technol, 2018, 37(4): 1214
    [85] Matsuda K, Matsumoto R, Suzuki N. Hardware-efficient adaptive equalization and carrier phase recovery for 100-Gb/s/λ-based coherent WDM-PON systems. J Light Technol, 2018, 36(8): 1492 doi: 10.1109/JLT.2017.2784804
    [86] Yin X, Coudyzer G, Ossieur P, et al. Linear burst-mode receivers for DSP-enabled passive optical networks // Optical Fiber Communication Conference. San Francisco, 2021: M3G. 1
    [87] Li G Q, Xing S Z, Li Z Y, et al. 200-Gb/s/λ coherent TDM-PON with wide dynamic range of> 30-dB based on local oscillator power adjustment // Optical Fiber Communication Conference. San Diego, 2022: Th3E. 3
    [88] Koma R, Fujiwara M, Kani J I, et al. Burst-mode digital signal processing that pre-calculates FIR filter coefficients for digital coherent PON upstream. J Opt Commun Netw, 2018, 10(5): 461 doi: 10.1364/JOCN.10.000461
    [89] Koma R, Fujiwara M, Kani J I, et al. Fast feed-forward optical and electrical gain control to extend the dynamic range of the burst-mode digital coherent receiver for high-speed TDM-PON systems. J Light Technol, 2021, 40(3): 647
    [90] Zhang J A, Zhou Q Y, Zhu M, et al. Demonstration of all-digital burst clock and data recovery for symmetrical 50 Gb/s/λ PON based on low-bandwidth optics. Opt Commun, 2022, 516: 128266 doi: 10.1016/j.optcom.2022.128266
    [91] Torres-Ferrera P, Wang H Y, Ferrero V, et al. Optimization of band-limited DSP-aided 25 and 50 Gb/s PON using 10G-class DML and APD. J Light Technol, 2019, 38(3): 608
    [92] Koma R, Fujiwara M, Kani J I, et al. Demonstration of real-time burst-mode digital coherent reception with wide dynamic range in DSP-based PON upstream. J Light Technol, 2016, 35(8): 1392
    [93] Zhou X, Zhong K P, Huo J H, et al. 112 Gb/s transmission over 80 km SSMF using PDM-PAM4 and coherent detection without optical amplifier. Opt Express, 2016, 24(15): 17359 doi: 10.1364/OE.24.017359
    [94] Zhou X, Zhong K P, Huo J H, et al. 112-Gbit/s PDM-PAM4 transmission over 80-km SMF using digital coherent detection without optical amplifier // 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). Prague, 2016: 1
    [95] Gao Y Y, Gao W P, Luo M, et al. 4× 112 Gb/s/λ MCF transmission using field PDM-PAM4 and coherent detection for datacenter applications. IEEE Photonics J, 2022, 14(1): 1
    [96] Gao W P, Gao Y Y, Lu D X, et al. Experimental demonstration of 448 Gb/s PS-PDM-PAM8 coherent transmission over multi-core fiber. Opt Fiber Technol, 2022, 69: 102849 doi: 10.1016/j.yofte.2022.102849
    [97] Gao W P, Gao Y Y, Luo M, et al. Experimental investigation of PS-PDM-PAM8 coherent transmission over multi-core fiber // 2021 Asia Communications and Photonics Conference (ACP). Shanghai, 2021: 1
  • 加載中
圖(10)
計量
  • 文章訪問數:  188
  • HTML全文瀏覽量:  36
  • PDF下載量:  28
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-12-14
  • 網絡出版日期:  2023-04-04
  • 刊出日期:  2023-10-25

目錄

    /

    返回文章
    返回