<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

空地數據實時傳輸下的飛機著陸風險預警方法

王巖韜 趙昕頤

王巖韜, 趙昕頤. 空地數據實時傳輸下的飛機著陸風險預警方法[J]. 工程科學學報, 2023, 45(10): 1759-1770. doi: 10.13374/j.issn2095-9389.2022.11.29.002
引用本文: 王巖韜, 趙昕頤. 空地數據實時傳輸下的飛機著陸風險預警方法[J]. 工程科學學報, 2023, 45(10): 1759-1770. doi: 10.13374/j.issn2095-9389.2022.11.29.002
WANG Yantao, ZHAO Xinyi. Advanced warning method for aircraft landing risk under air–ground data real-time transmission conditions[J]. Chinese Journal of Engineering, 2023, 45(10): 1759-1770. doi: 10.13374/j.issn2095-9389.2022.11.29.002
Citation: WANG Yantao, ZHAO Xinyi. Advanced warning method for aircraft landing risk under air–ground data real-time transmission conditions[J]. Chinese Journal of Engineering, 2023, 45(10): 1759-1770. doi: 10.13374/j.issn2095-9389.2022.11.29.002

空地數據實時傳輸下的飛機著陸風險預警方法

doi: 10.13374/j.issn2095-9389.2022.11.29.002
基金項目: 國家重點研發課題(2022YFC3002502) ;國家自然基金資助項目(U1933103)
詳細信息
    通訊作者:

    E-mail:CAUCwyt@126.com

  • 中圖分類號: N945.24;U8;V328.3

Advanced warning method for aircraft landing risk under air–ground data real-time transmission conditions

More Information
  • 摘要: 面向未來5G和衛星網構成的空地高通量互聯場景,為實現飛機著陸風險提前預警。首先基于統計與模型,建立了一套以多源運行實時數據為主,融合歷史統計和專家知識的著陸預警體系;然后,針對現有研究計算結果滯后問題,先通過對ARJ21飛機著陸過程快速存取記錄器(QAR)數據的聚類分析,將飛行員著陸操作模式分為4類,進而構建基于決策場理論的飛行員著陸操作模式預測模型,計算并討論不同場景下、不同個性飛行員的著陸模式選擇;在上述基礎上,針對著陸過程的復雜性和不確定性,提出一種分層計算的置信規則庫推理方法,融合定性與定量信息實現著陸動態風險評估和預警。最后,通過對“2020.10.16攀枝花跑道外接地事件”和“2010.8.2伊春空難”著陸過程的風險推理驗證了預警方法的有效性,其中攀枝花事件提前預警時間可達13 s。

     

  • 圖  1  機組信息處理模型

    Figure  1.  Information processing model of the crew

    圖  2  著陸風險指標體系

    Figure  2.  Risk index system for the landing

    圖  3  飛行員著陸操作模式. (a) A類; (b) B類; (c) C類; (d) D類

    Figure  3.  Pilot landing operation modes: (a) Class A; (b) Class B; (c) Class C; (d) Class D

    圖  4  飛行員著陸操作模式預測模型

    Figure  4.  Prediction model of the pilot landing operation modes

    圖  5  著陸屬性正態擬合圖. (a)接地俯仰角;(b)接地速度;(c)接地垂直速率;(d)15 m-接地水平距離

    Figure  5.  Normal distribution fitting of landing attributes: (a) grounding pitch angle ;(b) grounding speed;(c) grounding vertical rate; (d) 15 m-ground horizontal distance

    圖  6  飛行員著陸操作偏好分布圖. (a) T=10 s, Sii=0.1; (b) T=10 s, Sii=0.9; (c) T=30 s, Sii=0.1; (d) T=30 s, Sii=0.9

    Figure  6.  Preference distribution of the pilot landing operations: (a) T=10 s, Sii=0.1; (b) T=10 s, Sii=0.9; (c) T=30 s, Sii=0.1; (d) T=30 s, Sii=0.9

    圖  7  基于分層BRB的著陸風險評估系統

    Figure  7.  Landing risk assessment system based on layered BRB

    圖  8  B-8667風險變化情況

    Figure  8.  Risk changes in B-8667

    表  1  屬性矩陣與屬性參考值

    Table  1.   Attribute matrix and attribute reference values

    Alternative modelGrounding pitch angle/(°)Grounding speed/(m·s-1Grounding vertical rate/(m·s?1)15 mground horizontal distance /m
    A2.1767.32?0.31598.27
    B1.5266.26?0.43661.29
    C2.0268.60?0.43757.64
    D1.7367.26?0.36566.38
    Mean value1.8967.45?0.43641.26
    Standard deviation0.944.060.28123.44
    下載: 導出CSV

    表  2  歸一化后屬性矩陣

    Table  2.   Normalized attribute matrix

    Alternative planGrounding pitch angleGrounding speedGrounding vertical rate15 m-ground horizontal distance
    A0.511.000.000.84
    B0.000.000.951.00
    C1.000.220.120.00
    D0.690.941.000.51
    下載: 導出CSV

    表  3  不同參數設置下的著陸模式選擇概率

    Table  3.   Landing mode selection probability under different parameter settings

    Parameter settingsPAPBPCPDMean time/s
    T=10 s,Sii=0.10.2350.2370.1520.37610.00
    T=10 s,Sii=0.90.1900.0830.0150.7129.79
    T=30 s,Sii=0.10.2510.2500.1290.37030.00
    T=30 s,Sii=0.90.1140.0360.0010.84916.04
    下載: 導出CSV

    表  4  指標參考值

    Table  4.   Index reference values

    IndexReference valuesIndexReference values
    X1L(800 m); M(1600 m); H(5000 m)X19L(0); M(0.5); H(1)
    X2L(60 m); M(300 m); H(600 m)X20L(3.05 m?s?1); M(4.07 m?s?1); H(5.59 m?s?1)
    X3N(0); Y(1)······
    X4L(0 m?s?1); M(3.6 m?s?1); H(10 m?s?1)Y10L(1); M(5); H(10)
    ······Y11N(0); Y(1)
    X17L(Vref?2.5 m?s?1); M(Vref , m?s?1); H(Vref+10 m?s?1)Y12L(1); M(5); H(10)
    X18L(0); M(0.5); H(1)Y13L(1); M(5); H(10)
    Notes:Vref means reference landing speed,m?s?1.
    下載: 導出CSV

    表  5  著陸風險評估置信規則庫

    Table  5.   Landing risk assessment belief rule base

    Rule numberRule base numberRule weightPremise attributeEvaluation result
    111(X3 is Y)Y1 is {(L,1)}
    211(X4 is H)Y1 is {(H,1)}
    311(X3 is N∧X4 is M∧Y5 is M∧X6 is M∧X7 is M)Y1 is {(M,1)}
    411(X3 is N∧X4 is L∧Y5 is L∧X6 is L∧X7 is M)Y1 is {(L,0.75), (M,0.25)}
    511(X3 is N∧X4 is M∧Y5 is M∧X6 is L∧X7 is L)Y1 is {(L,0.5), (M,0.5)}
    611(X3 is N∧X4 is L∧Y5 is L∧X6 is L∧X7 is L)Y1 is {(L,1)}
    ············
    115131(X35 is L)Y13 is {(L,0.2), (M,0.3), (H,0.5)}
    116131(X35 is H)Y13 is {(L,0.2), (M,0.3), (H,0.5)}
    117131(X32 is M∧X33 is M∧Y34 is M∧X35 is M)Y13 is {(L,0.8), (M,0.2)}
    下載: 導出CSV

    表  6  B-8667著陸風險指標值

    Table  6.   Landing risk index values of B-8667

    Time before grounding/sX1/mX2/mX3···X20/(m?s?1)X21/(°)···X30X31
    202500100003.462.80.950.95
    192465100003.7330.950.95
    182430100004.003.30.950.95
    ············
    31310100004.283.90.950.95
    21275100004.053.60.950.95
    11200100003.903.60.950.95
    下載: 導出CSV

    表  7  B-8667實時風險評估值

    Table  7.   Real-time risk assessment value of B-8667

    Time before landing/s201918···321
    Risk value4.554.554.56···7.298.118.84
    下載: 導出CSV

    表  8  B-3130著陸風險指標值

    Table  8.   Landing risk index values of B-3130

    IndexX1X2X3···X20X21···X30X31
    Value28006000···8723···0.950.95
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] CAAC. The 14th five-year civil aviation development planning [J/OL]. The State Council The People’s Republic Of China (2021-12-14) [2022-11-29]. https://www.gov.cn/zhengce/zhengceku/2022-01/07/content_5667003.htm

    中國民用航空局. “十四五”民用航空發展規劃 [J/OL]. 中華人民共和國中央人民政府(2021-12-14) [2022-11-29]. https://www.gov.cn/zhengce/zhengceku/2022-01/07/content_5667003.htm
    [2] CAAC. Notice of the civil aviation administration of China on issuing road map for smart civil aviation [J/OL]. The State Council The People’s Republic Of China (2022-01-21) [2022-11-29]. https://www.gov.cn/xinwen/2022-01/21/content_5669771.htm

    中國民用航空局. 中國民用航空局關于印發智慧民航建設路線圖的通知 [J/OL]. 中華人民共和國中央人民政府 (2022-01-21) [2022-11-29]. https://www.gov.cn/xinwen/2022-01/21/content_5669771.htm
    [3] Reed S. ALAR approach and landing accident reduction [J/OL]. Flight Safety Digest (2019-05-09) [2022-11-29]. https://flightsafety.org/fsd_aug-nov00/
    [4] FAA. Flight risk assessment tools [J/OL]. FAA Safety Briefing (2022-02-04) [2022-11-29]. https://www.faa.gov/newsroom/safety-briefing/flight-risk-assessment-tools
    [5] Feng C, Zhao T D. Case knowledge-based system safety risk model. Acta Aeronaut Sin, 2010, 31(4): 724

    馮暢, 趙廷弟. 基于案例知識的系統安全風險模型. 航空學報, 2010, 31(4):724
    [6] Wang H W, Zuo H F. Evaluation of airline safety. Syst Eng, 2006, 24(2): 46 doi: 10.3969/j.issn.1001-4098.2006.02.010

    王華偉, 左洪福. 航空公司安全評估研究. 系統工程, 2006, 24(2):46 doi: 10.3969/j.issn.1001-4098.2006.02.010
    [7] Wang Y T, Li R, Lu F, et al. Risk assessment system of flight operation based on multiple factor analysis. J Tianjin Polytech Univ, 2014, 33(3): 84

    王巖韜, 李蕊, 盧飛, 等. 基于多因素分析的航班運行風險評估體系. 天津工業大學學報, 2014, 33(3):84
    [8] Wang Y T, Chen G M, Liu Y, et al. Flight operations risk improvement prediction based on Adaptive Lasso and RF. J Transp Syst Eng Inf Technol, 2018, 18(4): 194

    王巖韜, 陳冠銘, 劉毓, 等. 基于Adaptive Lasso與RF的航班運行風險預測改進研究. 交通運輸系統工程與信息, 2018, 18(4):194
    [9] Wang L, Zhang J Y, Dong C T, et al. A method of applying flight data to evaluate landing operation performance. Ergonomics, 2019, 62(2): 171 doi: 10.1080/00140139.2018.1502806
    [10] Barry D J. Estimating runway veer-off risk using a Bayesian network with flight data. Transp Res C, 2021, 128: 103180 doi: 10.1016/j.trc.2021.103180
    [11] Cai J, Cai K, Huang S J. Early warning method for heavy landing of civil aircraft based on real-time monitoring parameters. J Traffic Transp Eng, 2022, 22(2): 298 doi: 10.19818/j.cnki.1671-1637.2022.02.024

    蔡景, 蔡坤燁, 黃世杰. 基于實時監測參數的民用飛機重著陸預警方法. 交通運輸工程學報, 2022, 22(2):298 doi: 10.19818/j.cnki.1671-1637.2022.02.024
    [12] Wang Y H, Pang Y T, Chen O, et al. Uncertainty quantification and reduction in aircraft trajectory prediction using Bayesian-Entropy information fusion. Reliab Eng Syst Saf, 2021, 212: 107650 doi: 10.1016/j.ress.2021.107650
    [13] Havlikova M, Jirgl M, Bradac Z. Human reliability in man-machine systems. Procedia Eng, 2015, 100: 1207 doi: 10.1016/j.proeng.2015.01.485
    [14] Degrauwe M G R, Nys O, Dijkstra E, et al. IDAC: An interactive design tool for analog CMOS circuits. IEEE J Solid State Circuits, 1987, 22(6): 1106 doi: 10.1109/JSSC.1987.1052861
    [15] Busemeyer J R, Townsend J T. Decision field theory: A dynamic-cognitive approach to decision making in an uncertain environment. Psychol Rev, 1993, 100(3): 432 doi: 10.1037/0033-295X.100.3.432
    [16] Gao F, Wang M Z. Process-oriented dynamic route choice model. J Transp Syst Eng and Inf Technol, 2009, 9(5): 96 doi: 10.3969/j.issn.1009-6744.2009.05.015

    高峰, 王明哲. 面向決策過程的動態路徑選擇模型. 交通運輸系統工程與信息, 2009, 9(5):96 doi: 10.3969/j.issn.1009-6744.2009.05.015
    [17] Zheng L, Chi H, Shao X Y. Pattern recognition and risk analysis for flight operations. Chin J Manag Sci, 2017, 25(10): 109

    鄭磊, 池宏, 邵雪焱. 基于QAR數據的飛行操作模式及其風險分析. 中國管理科學, 2017, 25(10):109
    [18] Wang L, Ren Y, Wu C X. Effects of flare operation on landing safety: A study based on ANOVA of real flight data. Saf Sci, 2018, 102: 14 doi: 10.1016/j.ssci.2017.09.027
    [19] Jiang J, Li X, Xing L N, et al. System risk analysis and evaluation approach based on fuzzy evidential reasoning. Syst Eng Theory Pract, 2013, 33(2): 529

    姜江, 李璇, 邢立寧等. 基于模糊證據推理的系統風險分析與評價. 系統工程理論與實踐, 2013, 33(2):529
    [20] Samson S, Reneke J A, Wiecek M M. A review of different perspectives on uncertainty and risk and an alternative modeling paradigm. Reliab Eng Syst Saf, 2009, 94(2): 558 doi: 10.1016/j.ress.2008.06.004
    [21] Yazdi M, Kabir S. Fuzzy evidence theory and Bayesian networks for process systems risk analysis. Hum Ecol Risk Assess, 2020, 26(1): 57 doi: 10.1080/10807039.2018.1493679
    [22] Yang J B, Liu J, Wang J, et al. Belief rule-base inference methodology using the evidential reasoning Approach-RIMER. IEEE Trans Syst Man Cybern A, 2006, 36(2): 266 doi: 10.1109/TSMCA.2005.851270
    [23] Yang J B, Liu J, Xu D L, et al. Optimization models for training belief-rule-based systems. IEEE Trans Syst Man Cybern A, 2007, 37(4): 569 doi: 10.1109/TSMCA.2007.897606
    [24] Guo M. A belief-rule-based inference method for modeling systems under uncertainties. Syst Eng Theory Pract, 2016, 36(8): 1975

    郭敏. 基于置信規則庫推理的不確定性建模研究. 系統工程理論與實踐, 2016, 36(8):1975
    [25] Zhou Z J, Yang J B, Hu C H. Expert System of Belief Rule Base and Modeling of Complex System. Beijing: Science Press, 2011

    周志杰, 楊建波. 置信規則庫專家系統與復雜系統建模. 北京: 科學出版社, 2011
  • 加載中
圖(8) / 表(8)
計量
  • 文章訪問數:  171
  • HTML全文瀏覽量:  34
  • PDF下載量:  27
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-11-29
  • 網絡出版日期:  2023-02-07
  • 刊出日期:  2023-10-25

目錄

    /

    返回文章
    返回