<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

鋼鐵工業煙氣脫硝技術應用進展及前景

張柏林 洪華 王天球 張新遠 鄔博宇 劉波 張深根

張柏林, 洪華, 王天球, 張新遠, 鄔博宇, 劉波, 張深根. 鋼鐵工業煙氣脫硝技術應用進展及前景[J]. 工程科學學報, 2023, 45(9): 1602-1612. doi: 10.13374/j.issn2095-9389.2022.11.26.001
引用本文: 張柏林, 洪華, 王天球, 張新遠, 鄔博宇, 劉波, 張深根. 鋼鐵工業煙氣脫硝技術應用進展及前景[J]. 工程科學學報, 2023, 45(9): 1602-1612. doi: 10.13374/j.issn2095-9389.2022.11.26.001
ZHANG Bolin, HONG Hua, WANG Tianqiu, ZHANG Xinyuan, WU Boyu, LIU Bo, ZHANG Shengen. Progress and prospects of flue gas deNOx technology for the iron and steel industry[J]. Chinese Journal of Engineering, 2023, 45(9): 1602-1612. doi: 10.13374/j.issn2095-9389.2022.11.26.001
Citation: ZHANG Bolin, HONG Hua, WANG Tianqiu, ZHANG Xinyuan, WU Boyu, LIU Bo, ZHANG Shengen. Progress and prospects of flue gas deNOx technology for the iron and steel industry[J]. Chinese Journal of Engineering, 2023, 45(9): 1602-1612. doi: 10.13374/j.issn2095-9389.2022.11.26.001

鋼鐵工業煙氣脫硝技術應用進展及前景

doi: 10.13374/j.issn2095-9389.2022.11.26.001
基金項目: 國家自然科學基金資助項目(52204414); 佛山市人民政府科技創新專項資金資助項目(BK22BE001); 北京科技大學順德創新學院博士后科研資助項目(2020BH012); 中央高校基本科研業務費資助項目(FRF-TP-20-097A1Z)
詳細信息
    通訊作者:

    E-mail: zhangshengen@mater.ustb.edu.cn

  • 中圖分類號: X511

Progress and prospects of flue gas deNOx technology for the iron and steel industry

More Information
  • 摘要: 氮氧化物(NOx)已成為我國首要大氣污染物,鋼鐵工業是工業源NOx排放的主要來源。燒結、球團、煉焦等工序是鋼鐵工業NOx超低排放改造的重點,但其煙氣特性與火電廠煙氣存在差異,煙氣脫硝技術不能完全照搬現有燃煤鍋爐脫硝工藝。目前,選擇性催化還原(SCR)、活性炭(焦)(AC)吸附催化、臭氧(O3)氧化協同吸收等技術已在燒結、球團、煉焦等工序成功應用,并均取得了良好效果。本文針對鋼鐵工業超低排放的迫切需求,梳理了鋼鐵工業燒結、球團、煉焦等主要工序的現有煙氣脫硝技術及其應用,重點總結并對比分析了SCR技術、AC吸附催化和O3氧化協同吸收技術的應用進展及優劣勢。其中,SCR技術正逐步成為鋼鐵工業脫硝市場的主流技術,占比超過70%,因此脫硝催化劑及其再生具有長期巨大的市場需求。AC吸附催化和O3氧化協同吸收等新型技術因其適用溫度低,無需煙氣升溫等,在鋼鐵工業越來越受到青睞,將逐步得到更多鋼鐵企業的支持。

     

  • 圖  1  燒結煙氣活性炭凈化工藝流程[31]

    Figure  1.  Purification process of activated carbon from sintered flue gas[31]

    圖  2  逆流式CSCR系統運行成本構成[32]

    Figure  2.  Composition of running cost of reverse-flow carbon selective catalytic reduction system[32]

    圖  3  O3氧化協同吸收工藝的O3消耗分布示意圖[40]

    Figure  3.  O3 consumption distribution schematic diagram for O3 oxidation combined with absorption[40]

    表  1  我國鋼鐵工業NOx超低排放標準

    Table  1.   Ultra-low emissions of NOx for the iron and steel industry in China

    Implemented regionLimit of NOx emission for production processes (specific equipment)/(mg·m?3)Criterion number
    Sintering/pelletizing
    (sintering head/pellet
    firing machine)
    Blast furnace
    ironmaking
    (hot blast stove)
    Steel-smelting (lime
    and dolomite kiln)
    Steel rolling (heat
    treatment furnace)
    Coking (coke oven chimney)
    Nation500,
    300 (new project)
    300350,
    300 (new project)
    240,
    200 (new project)
    GB 28662—2012,
    GB 28663—2012,
    GB 28664—2012,
    GB 16717—2012
    Nation50200200150(2019) No.35
    Shanxi50200200200DB14/2249—2020
    Tianjin50200150200150DB12/1120—2022
    Hebei50150150150130DB13/2169—2018,
    DB13/2863—2018
    Shandong50150150100 (key area),
    150 (general area)
    DB37/990—2019,
    DB37/2376—2019
    Henan50150150100DB41/1954—2020,
    DB41/1955—2020
    下載: 導出CSV

    表  2  山西五麟煤焦脫硝催化劑設計參數[22]

    Table  2.   Design parameters of catalysts for Shanxi Wulin Coal Coke Co., Ltd. [22]

    Catalyst’s typeHole densityThermal expansion coefficient/℃?1Compressive strength/MPaSize of catalyst/
    (mm×mm×mm)
    Pitch/mmDensity/
    (kg?m?3)
    Cordierite honeycomb ceramic coating100 holes per inch≤1.6×10?6Axial ≥ 15;
    radial ≥ 2
    150×150 ×1252.5600–700
    ComponentsOperating temperature/℃Amount of catalysts/m3ArrangementCatalyst layersGaseous hourly space velocity/h?1Designed life/h
    V2O5?WO3/TiO2/ Cordierite250–35030.3860×60 units per layer3+16000?700024000
    下載: 導出CSV

    表  3  活性炭及介質消耗量[33]

    Table  3.   Consumption of activated carbon and others[33]

    ProjectAnnual consumptionConvert coefficientConvert to standard coal/GJ
    Activated carbon701 t29.3 MJ?kg?120529
    Electric energy1594×104 kW·h3.6 MJ?kW·h?157399
    NH31251 t11.7 MJ?kg?114662
    Coke oven gas455×104 m316.7 MJ?m?376176
    Compressed air1226×104 m31.0 MJ?m?312249
    N2701×104 m311.7 MJ?m?382157
    steam26280 t3.8 MJ?kg?199023
    water10512 t4.2 MJ?kg?144044
    Total406250
    下載: 導出CSV

    表  4  鋼鐵工業煙氣脫硝技術優劣勢對比

    Table  4.   Advantages and disadvantages of deNOx technology for the iron and steel industry

    DeNOx TechnologiesTypical routesDeNOx temperature/℃NOx removal/%AdvantagesDisadvantages
    SCR technologyWet/semidry desulfurization + SCR200–300≥80High NOx removal efficiency;
    high stability.
    High facilities and catalyst replacement cost;
    high cost for flue gas heating;
    produce hazardous waste.
    AC adsorption and catalysisAC integrated technology120–150≥50Removal of SO2 and NOx simultaneously;
    utilization of by-products;
    easy to use of waste AC.
    Low NOx removal efficiency;
    High cost of running and AC replacement;
    potential risk of AC ignition.
    O3 oxidation with absorptionO3 oxidation + wet/semidry desulfurization90–150≥70Low facilities cost;
    low floor space;
    high stability.
    Relative high running cost;
    potential risk of O3 escape;
    bad for utilization of desulfurization slag.
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Yi H H, Zhong T T, Liu J, et al. Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures. J Clean Prod, 2021, 304: 126958 doi: 10.1016/j.jclepro.2021.126958
    [2] Zhang J L, Yu J Y, Liu Z J, et al. Current situation and trend of air pollutant emission in China’s steel industry. Iron Steel, 2021, 56(12): 1 doi: 10.13228/j.boyuan.issn0449-749x.20210068

    張建良, 尉繼勇, 劉征建, 等. 中國鋼鐵工業空氣污染物排放現狀及趨勢. 鋼鐵, 2021, 56(12):1 doi: 10.13228/j.boyuan.issn0449-749x.20210068
    [3] Cui L, Ba K M, Li F Q, et al. Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Sci Total Environ, 2020, 725: 138292 doi: 10.1016/j.scitotenv.2020.138292
    [4] Tian T, Cheng Q, Zhao X, et al. Review and prospect of the development of desulfurization and denitration industry in 2019. China Environ Prot Ind, 2020(2): 23 doi: 10.3969/j.issn.1006-5377.2020.02.007

    田恬, 程茜, 趙雪, 等. 2019年脫硫脫硝行業發展評述及展望. 中國環保產業, 2020(2):23 doi: 10.3969/j.issn.1006-5377.2020.02.007
    [5] Hu B, Hu P W, Lu B, et al. NOx emission reduction by advanced reburning in grate-rotary kiln for the iron ore pelletizing production. Processes, 2020, 8(11): 1470 doi: 10.3390/pr8111470
    [6] Wang Z C, Zhou Z A, Gan M, et al. Process control technology of low NOx sintering based on coke pretreatment. J Cent South Univ, 2020, 27(2): 469 doi: 10.1007/s11771-020-4309-y
    [7] Que Z G, Ai X B, Wu S L. Reduction of NOx emission based on optimized proportions of mill scale and coke breeze in sintering process. Int J Miner Metall Mater, 2021, 28(9): 1453 doi: 10.1007/s12613-020-2103-3
    [8] Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061

    于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061
    [9] Long H M, Ding L, Qian L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas. Chem Ind Eng Prog, 2022, 41(7): 3865

    龍紅明, 丁龍, 錢立新, 等. 燒結煙氣中NOx和二噁英的減排現狀及發展趨勢. 化工進展, 2022, 41(7):3865
    [10] Guo Y H. Current station and tendency of purification and upgrading of blast furnace gas. J Iron Steel Res, 2020, 32(7): 525 doi: 10.13228/j.boyuan.issn1001-0963.20190274

    郭玉華. 高爐煤氣凈化提質利用技術現狀及未來發展趨勢. 鋼鐵研究學報, 2020, 32(7):525 doi: 10.13228/j.boyuan.issn1001-0963.20190274
    [11] Wei Q L, Ge L J, Liu S J, et al. High air temperature and low nitrogen combustion technology of top burning catenary hot blast stove. Hebei Metall, 2021(2): 64 doi: 10.13630/j.cnki.13-1172.2021.0214

    魏前龍, 葛利軍, 劉世聚, 等. 頂燃式懸鏈線熱風爐高風溫低氮燃燒技術. 河北冶金, 2021(2):64 doi: 10.13630/j.cnki.13-1172.2021.0214
    [12] Xu J M, Zhu J M, Li X L, et al. Reformation and practice of low nitrogen combustion method to reduce NOx emission in steel rolling reheating furnace. Energy Metall Ind, 2021, 40(3): 42 doi: 10.3969/j.issn.1001-1617.2021.03.010

    許京銘, 朱繼民, 李新林, 等. 軋鋼加熱爐采用低氮燃燒法降低NOx排放的改造與實踐. 冶金能源, 2021, 40(3):42 doi: 10.3969/j.issn.1001-1617.2021.03.010
    [13] Dong S Y, Zhu B C. New technology of low NOx combustion in 7m battery and its application. Fuel Chem Process, 2020, 51(1): 50 doi: 10.16044/j.cnki.rlyhg.2020.01.019

    董少英, 朱百成. 7m焦爐低氮燃燒新技術及應用. 燃料與化工, 2020, 51(1):50 doi: 10.16044/j.cnki.rlyhg.2020.01.019
    [14] Zhang B L, Zhang S G, Liu B. Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Appl Surf Sci, 2020, 529: 147068 doi: 10.1016/j.apsusc.2020.147068
    [15] Zhang B L, Deng L F, Liu B, et al. Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Met, 2022, 41(1): 166 doi: 10.1007/s12598-021-01790-5
    [16] Zhao L M, Liang L S, Cai J, et al. Application of low-temperature SCR flue gas denitrification technology in sintering process of Zhanjiang Iron & Steel. Sintering Pelletizing, 2022, 47(5): 89 doi: 10.13403/j.sjqt.2022.05.076

    趙利明, 梁利生, 蔡嘉, 等. 低溫SCR煙氣脫硝技術在湛江鋼鐵燒結工序的應用. 燒結球團, 2022, 47(5):89 doi: 10.13403/j.sjqt.2022.05.076
    [17] Zhang S G, Zhang B L, Liu B, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation. RSC Adv, 2017, 7(42): 26226 doi: 10.1039/C7RA03387G
    [18] Zhang B L, Zhang S Y, Zhang S G. The use of rare earths in catalysts for selective catalytic reduction of NOx. Prog Chem, 2022, 34(2): 301

    張柏林, 張生楊, 張深根. 稀土元素在脫硝催化劑中的應用. 化學進展, 2022, 34(2):301
    [19] Han J, He X, Qin L, et al. NOx removal coupled with energy recovery in sintering plant. Ironmak Steelmak, 2014, 41(5): 350 doi: 10.1179/1743281213Y.0000000158
    [20] Liu J H, Fan Z Y, Cheng H, et al. Integration and application of key technologies for ultra-low emission of flue gas in Qiangang Pelletizing Plant. China Metall, 2020, 30(10): 98 doi: 10.13228/j.boyuan.issn1006-9356.20200464

    劉建輝, 范正赟, 程華, 等. 遷鋼球團煙氣超低排放關鍵技術集成與應用. 中國冶金, 2020, 30(10):98 doi: 10.13228/j.boyuan.issn1006-9356.20200464
    [21] Zhou M J, Zhang D H. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel. Iron Steel, 2020, 55(2): 144

    周茂軍, 張代華. 寶鋼燒結煙氣超低排放技術集成與實踐. 鋼鐵, 2020, 55(2):144
    [22] Zhang C. Research and application of low temperature denitration process in coke oven flue gas. Pet Chem Constr, 2022, 44(2): 13 doi: 10.3969/j.issn.1672-9323.2022.02.005

    張翠. 焦爐煙氣中低溫脫硝工藝的研究與應用. 石油化工建設, 2022, 44(2):13 doi: 10.3969/j.issn.1672-9323.2022.02.005
    [23] Li Y G, An L, Ren C T, et al. Semi-industrial test on low temperature SCR denitrification catalyst for sintering flue gas. China Metall, 2021, 31(2): 95

    李永光, 安璐, 任翠濤, 等. 燒結煙氣低溫SCR脫硝催化劑半工業化試驗. 中國冶金, 2021, 31(2):95
    [24] Ji G, Dong W J, Li Q, et al. Study on ultra-low emission technology of NOx in Taigang sintering flue gas. Sintering Pelletizing, 2018, 43(2): 67

    冀崗, 董衛杰, 李強, 等. 太鋼燒結煙氣氮氧化物超低排放技術研究. 燒結球團, 2018, 43(2):67
    [25] Zhou H, Ma P N, Lai Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process. J Clean Prod, 2020, 275: 122954 doi: 10.1016/j.jclepro.2020.122954
    [26] Liu X L, Guo J X, Chu Y H, et al. Desulfurization performance of iron supported on activated carbon. Fuel, 2014, 123: 93 doi: 10.1016/j.fuel.2014.01.068
    [27] Gao J X, Liu J, Zeng Y, et al. Application and analysis of dry activated coke(carbon) sintering flue gas purification technology in iron and steel industry—Process and technical and economical analysis. Sintering Pelletizing, 2012, 37(1): 65 doi: 10.3969/j.issn.1000-8764.2012.01.017

    高繼賢, 劉靜, 曾艷, 等. 活性焦(炭)干法燒結煙氣凈化技術在鋼鐵行業的應用與分析(Ⅰ)——工藝與技術經濟分析. 燒結球團, 2012, 37(1):65 doi: 10.3969/j.issn.1000-8764.2012.01.017
    [28] Wang J J, Wang Y J, She X F, et al. Numerical study on the distribution of flue gas residence time in the desulfurization and denitrification system by the optimization of the model. Int J Chem React Eng, 2022, 20(10): 1095 doi: 10.1515/ijcre-2022-0043
    [29] Wu S L, Zhang W L, Hu Z J. Properties change of activated coke for sintering flue gas purification in cyclic removal of SO2 and NOx. J Iron Steel Res Int, 2021, 28(6): 641 doi: 10.1007/s42243-020-00486-x
    [30] Xie W, Li X L, Lu X D, et al. Mechanism and development trend of desulfurization & denitrification of activated carbon used in flue gas purification. Clean Coal Technol, 2021, 27(6): 1

    解煒, 李小亮, 陸曉東, 等. 煙氣凈化用活性炭脫硫脫硝機理研究與發展趨勢. 潔凈煤技術, 2021, 27(6):1
    [31] Xiang S Y, Zhang Z H, Xing X D, et al. Research progress of activated carbon for desulfurization and denitrification of sintering flue gas [J/OL]. J Iron Steel Res (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html

    向思羽, 張朝暉, 邢相棟, 等. 燒結煙氣脫硫脫硝活性炭的研究進展[J/OL]. 鋼鐵研究學報 (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html
    [32] Han J, Yan Z H, Shao J G. Technical characteristics of counter flow active carbon-flue gas desulphurization and denitrification process and its application. Sintering Pelletizing, 2018, 43(6): 13

    韓健, 閻占海, 邵久剛. 逆流式活性炭煙氣脫硫脫硝技術特點及應用. 燒結球團, 2018, 43(6):13
    [33] Guo Y N. Application of activated carbon desulfurization and denitrification technology in coke oven flue gas. Inner Mongolia Coal Econ, 2022(12): 115 doi: 10.3969/j.issn.1008-0155.2022.12.039

    郭雅楠. 活性炭脫硫脫硝技術在焦爐煙氣中的應用. 內蒙古煤炭經濟, 2022(12):115 doi: 10.3969/j.issn.1008-0155.2022.12.039
    [34] Jian K, Liu R, Wang D C. Application of activated carbon integrated desulfurization and denitrification in WISCO Coking // Proceedings of the 14th Symposium (2020) on Energy Conservation & Environment Protection and CDQ Technology in Coking Industry. Taian, 2020: 141

    簡科, 劉睿, 王大春. 活性炭一體化脫硫脫硝在武鋼焦化的應用 // 2020年(第十四屆)焦化節能環保及干熄焦技術研討會. 泰安, 2020: 141
    [35] Han K, Cao J G, Xiang H F, et al. Application of activated carbon desulfurization and denitrification technology in coking plant of Anyang steel. Henan Chem Ind, 2020, 37(3): 37

    韓礦, 曹紀剛, 向海飛, 等. 活性炭脫硫脫硝技術在安鋼焦化廠的應用. 河南化工, 2020, 37(3):37
    [36] Fu W J, Fu Y M. Application of activated coke desulfurization and denitrification technology in sintering flue gas engineering. Shandong Chem Ind, 2015, 44(22): 178 doi: 10.3969/j.issn.1008-021X.2015.22.070

    傅文娟, 傅月梅. 活性焦脫硫脫硝技術在燒結煙氣工程上的應用. 山東化工, 2015, 44(22):178 doi: 10.3969/j.issn.1008-021X.2015.22.070
    [37] Jiang J, Li Q, Deng C H, et al. Application of different DeSOx and DeNOx technologies on Masteel coke plant. Fuel Chem Process, 2022, 53(1): 63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023

    江靜, 李強, 鄧成豪, 等. 兩種脫硫脫硝技術在馬鋼的應用. 燃料與化工, 2022, 53(1):63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023
    [38] Rovira M, Engvall K, Duwig C. Detailed numerical simulations of low-temperature oxidation of NOx by ozone. Fuel, 2021, 303: 121238 doi: 10.1016/j.fuel.2021.121238
    [39] Ji R J, Xu W Q, Wang J, et al. Research progress of ozone oxidation denitrification technology. CIESC J, 2018, 69(6): 2353

    紀瑞軍, 徐文青, 王健, 等. 臭氧氧化脫硝技術研究進展. 化工學報, 2018, 69(6):2353
    [40] Zou Y, Liu X L, Zhu T Y, et al. Simultaneous removal of NOx and SO2 by MgO combined with O3 oxidation: The influencing factors and O3 consumption distributions. ACS Omega, 2019, 4(25): 21091 doi: 10.1021/acsomega.9b02502
    [41] Yamamoto Y, Yamamoto H, Takada D, et al. Simultaneous removal of NOx and SOx from flue gas of a glass melting furnace using a combined ozone injection and semi-dry chemical process. Ozone:Sci Eng, 2016, 38(3): 211 doi: 10.1080/01919512.2015.1115335
    [42] Mok Y S, Lee H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Process Technol, 2006, 87(7): 591 doi: 10.1016/j.fuproc.2005.10.007
    [43] Yang Y X, Xue X L, Liu Y, et al. Orthogonal experiments on ozonation denitration of iron-steel sintering flue gas. Environ Sci Technol, 2018, 41(Suppl 1): 139

    楊穎欣, 薛學良, 劉勇, 等. 鋼鐵燒結煙氣臭氧氧化脫硝正交實驗研究. 環境科學與技術, 2018, 41(增刊 1):139
    [44] Fan B, Meng Y, Sun Y H. Oxidation denitration technology and application based on dense phase semi dry desulfurization process. China Steel Focus, 2020(21): 33

    范博, 孟宇, 孫宇航. 基于密相半干法脫硫工藝的氧化脫硝技術及應用. 冶金管理, 2020(21):33
    [45] Guo H K. Co-denitration technology and application of COA in flue gas of 180 m2 sintering machine. Energy Conserv Environ Prot, 2018(3): 68 doi: 10.3969/j.issn.1009-539X.2018.03.018

    郭厚焜. 180 m2燒結機煙氣COA協同脫硝技術及應用. 節能與環保, 2018(3):68 doi: 10.3969/j.issn.1009-539X.2018.03.018
    [46] Zhong L, Hu X T, Zhu T L, et al. Industrial application of the ozone oxidation and synergistic absorption technology for desulfurization and denitration. China Environ Prot Ind, 2021(7): 46 doi: 10.3969/j.issn.1006-5377.2021.07.013

    鐘璐, 胡小吐, 朱天樂, 等. 臭氧氧化協同吸收脫硫脫硝技術的工業應用. 中國環保產業, 2021(7):46 doi: 10.3969/j.issn.1006-5377.2021.07.013
    [47] Wang T G. Comparative analysis of SCR denitrification and COA ozone synergistic denitrification process for sintering flue gas. Sci Technol Innov, 2020(6): 13 doi: 10.3969/j.issn.1673-1328.2020.06.008

    王天廣. 燒結煙氣SCR脫硝與COA臭氧協同脫硝工藝對比分析. 科學技術創新, 2020(6):13 doi: 10.3969/j.issn.1673-1328.2020.06.008
    [48] World Metals. Review of China's ironmaking technology development in 2021[J/OL]. Mysteel (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html

    世界金屬導報. 2021年我國煉鐵技術發展評述[J/OL]. 我的鋼鐵 (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html
    [49] Wen B, Song B H, Sun G G, et al. Technical progress of denitration for iron-steel sintering flue gas. Environ Eng, 2017, 35(1): 103

    溫斌, 宋寶華, 孫國剛, 等. 鋼鐵燒結煙氣脫硝技術進展. 環境工程, 2017, 35(1):103
    [50] Yao G J, Wei M R, Liu J L, et al. Application researches on ball group vertical stove desulphurization project. Ind Saf Dust Control, 2005, 31(4): 38 doi: 10.3969/j.issn.1001-425X.2005.04.016

    姚國建, 韋鳴瑞, 柳建龍, 等. 球團豎爐煙氣脫硫工程應用研究. 工業安全與環保, 2005, 31(4):38 doi: 10.3969/j.issn.1001-425X.2005.04.016
    [51] Qiao J F. Technology development and industry application progress of desulfurization and denitrification from coke oven flue gas. Nat Gas Chem Ind, 2020, 45(4): 130

    喬建芬. 焦爐煙氣脫硫脫硝技術及產業化應用進展. 天然氣化工(C1化學與化工), 2020, 45(4):130
  • 加載中
圖(3) / 表(4)
計量
  • 文章訪問數:  431
  • HTML全文瀏覽量:  227
  • PDF下載量:  113
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-11-26
  • 網絡出版日期:  2023-01-12
  • 刊出日期:  2023-09-25

目錄

    /

    返回文章
    返回