Progress and prospects of flue gas deNOx technology for the iron and steel industry
-
摘要: 氮氧化物(NOx)已成為我國首要大氣污染物,鋼鐵工業是工業源NOx排放的主要來源。燒結、球團、煉焦等工序是鋼鐵工業NOx超低排放改造的重點,但其煙氣特性與火電廠煙氣存在差異,煙氣脫硝技術不能完全照搬現有燃煤鍋爐脫硝工藝。目前,選擇性催化還原(SCR)、活性炭(焦)(AC)吸附催化、臭氧(O3)氧化協同吸收等技術已在燒結、球團、煉焦等工序成功應用,并均取得了良好效果。本文針對鋼鐵工業超低排放的迫切需求,梳理了鋼鐵工業燒結、球團、煉焦等主要工序的現有煙氣脫硝技術及其應用,重點總結并對比分析了SCR技術、AC吸附催化和O3氧化協同吸收技術的應用進展及優劣勢。其中,SCR技術正逐步成為鋼鐵工業脫硝市場的主流技術,占比超過70%,因此脫硝催化劑及其再生具有長期巨大的市場需求。AC吸附催化和O3氧化協同吸收等新型技術因其適用溫度低,無需煙氣升溫等,在鋼鐵工業越來越受到青睞,將逐步得到更多鋼鐵企業的支持。Abstract: Nitrogen oxides (NOx) are the primary air pollutant in China. The iron and steel industries have become the primary industrial sources of NOx emissions in China. The NOx emissions from iron and steel industries account for 27.3% of all industrial NOx emissions from sources nationwide, surpassing thermal power generation and cement manufacturing. Over the past ten years, China’s iron and steel industry has achieved tremendous results in flue gas desulfurization, but a huge gap in denitrogenate (deNOx) still remains. In 2019, the Ministry of Ecology and Environment and other departments jointly issued “Opinions on Promoting the Implementation of Ultra-low Emission in the Iron and Steel Industry”, which promoted the retrofitting of ultra-low emission in the iron and steel industry. Sintering, pelleting, coking, and other processes are the focus of retrofitting for NOx emissions. Because their low-temperature flue gas contains several contaminants that differ from the flue gas of thermal power plants, they cannot completely copy the existing deNOx technology for the coal-fired boiler flue gas of thermal power plants. At present, selective catalytic reduction (SCR), activated carbon (AC) adsorption catalysis, ozone (O3) oxidation and absorption, and other technologies are used in sintering, pelleting, and coking processes. These technologies have achieved good results. Herein, we investigated the existing flue gas deNOx technologies for sintering, pelleting, and coking processes in iron and steel industries and analyzed the advantages and disadvantages of SCR technology, AC adsorption catalysis, and O3 oxidation and absorption technologies. The SCR technology has high efficiency and reliable performance, but the operation process requires heating of the flue gas, which uses large amounts of blast furnace gas or coking oven gas, and the service life of the catalyst is typically approximately three years. The waste SCR catalysts are recognized as HW50 hazardous waste. AC adsorption catalytic technology can simultaneously desulfurize and deNOx; its operating temperature is low without flue gas reheating. The by-product of H2SO4 can be utilized, and the waste AC produced can be directly used for sintering or coking, while its deNOx efficiency is low. O3 oxidation and absorption technologies have a low initial investment cost and require little floor space. However, their operating cost is relatively high, and the coabsorption of NOx and SO2 makes the desulfurization ash mixed with nitrate, which increases the difficulty of comprehensive utilization. Finally, we analyzed the application possibilities of SCR and other technologies, providing a reference for the development and selection of deNOx technologies for flue gas from the iron and steel industry.
-
表 1 我國鋼鐵工業NOx超低排放標準
Table 1. Ultra-low emissions of NOx for the iron and steel industry in China
Implemented region Limit of NOx emission for production processes (specific equipment)/(mg·m?3) Criterion number Sintering/pelletizing
(sintering head/pellet
firing machine)Blast furnace
ironmaking
(hot blast stove)Steel-smelting (lime
and dolomite kiln)Steel rolling (heat
treatment furnace)Coking (coke oven chimney) Nation 500,
300 (new project)300 350,
300 (new project)240,
200 (new project)GB 28662—2012,
GB 28663—2012,
GB 28664—2012,
GB 16717—2012Nation 50 200 200 150 (2019) No.35 Shanxi 50 200 200 200 DB14/2249—2020 Tianjin 50 200 150 200 150 DB12/1120—2022 Hebei 50 150 150 150 130 DB13/2169—2018,
DB13/2863—2018Shandong 50 150 150 100 (key area),
150 (general area)DB37/990—2019,
DB37/2376—2019Henan 50 150 150 100 DB41/1954—2020,
DB41/1955—2020表 2 山西五麟煤焦脫硝催化劑設計參數[22]
Table 2. Design parameters of catalysts for Shanxi Wulin Coal Coke Co., Ltd. [22]
Catalyst’s type Hole density Thermal expansion coefficient/℃?1 Compressive strength/MPa Size of catalyst/
(mm×mm×mm)Pitch/mm Density/
(kg?m?3)Cordierite honeycomb ceramic coating 100 holes per inch ≤1.6×10?6 Axial ≥ 15;
radial ≥ 2150×150 ×125 2.5 600–700 Components Operating temperature/℃ Amount of catalysts/m3 Arrangement Catalyst layers Gaseous hourly space velocity/h?1 Designed life/h V2O5?WO3/TiO2/ Cordierite 250–350 30.38 60×60 units per layer 3+1 6000?7000 24000 Project Annual consumption Convert coefficient Convert to standard coal/GJ Activated carbon 701 t 29.3 MJ?kg?1 20529 Electric energy 1594×104 kW·h 3.6 MJ?kW·h?1 57399 NH3 1251 t 11.7 MJ?kg?1 14662 Coke oven gas 455×104 m3 16.7 MJ?m?3 76176 Compressed air 1226×104 m3 1.0 MJ?m?3 12249 N2 701×104 m3 11.7 MJ?m?3 82157 steam 26280 t 3.8 MJ?kg?1 99023 water 10512 t 4.2 MJ?kg?1 44044 Total 406250 表 4 鋼鐵工業煙氣脫硝技術優劣勢對比
Table 4. Advantages and disadvantages of deNOx technology for the iron and steel industry
DeNOx Technologies Typical routes DeNOx temperature/℃ NOx removal/% Advantages Disadvantages SCR technology Wet/semidry desulfurization + SCR 200–300 ≥80 High NOx removal efficiency;
high stability.High facilities and catalyst replacement cost;
high cost for flue gas heating;
produce hazardous waste.AC adsorption and catalysis AC integrated technology 120–150 ≥50 Removal of SO2 and NOx simultaneously;
utilization of by-products;
easy to use of waste AC.Low NOx removal efficiency;
High cost of running and AC replacement;
potential risk of AC ignition.O3 oxidation with absorption O3 oxidation + wet/semidry desulfurization 90–150 ≥70 Low facilities cost;
low floor space;
high stability.Relative high running cost;
potential risk of O3 escape;
bad for utilization of desulfurization slag.259luxu-164 -
參考文獻
[1] Yi H H, Zhong T T, Liu J, et al. Emissions of air pollutants from sintering flue gas in the Beijing-Tianjin-Hebei area and proposed reduction measures. J Clean Prod, 2021, 304: 126958 doi: 10.1016/j.jclepro.2021.126958 [2] Zhang J L, Yu J Y, Liu Z J, et al. Current situation and trend of air pollutant emission in China’s steel industry. Iron Steel, 2021, 56(12): 1 doi: 10.13228/j.boyuan.issn0449-749x.20210068張建良, 尉繼勇, 劉征建, 等. 中國鋼鐵工業空氣污染物排放現狀及趨勢. 鋼鐵, 2021, 56(12):1 doi: 10.13228/j.boyuan.issn0449-749x.20210068 [3] Cui L, Ba K M, Li F Q, et al. Life cycle assessment of ultra-low treatment for steel industry sintering flue gas emissions. Sci Total Environ, 2020, 725: 138292 doi: 10.1016/j.scitotenv.2020.138292 [4] Tian T, Cheng Q, Zhao X, et al. Review and prospect of the development of desulfurization and denitration industry in 2019. China Environ Prot Ind, 2020(2): 23 doi: 10.3969/j.issn.1006-5377.2020.02.007田恬, 程茜, 趙雪, 等. 2019年脫硫脫硝行業發展評述及展望. 中國環保產業, 2020(2):23 doi: 10.3969/j.issn.1006-5377.2020.02.007 [5] Hu B, Hu P W, Lu B, et al. NOx emission reduction by advanced reburning in grate-rotary kiln for the iron ore pelletizing production. Processes, 2020, 8(11): 1470 doi: 10.3390/pr8111470 [6] Wang Z C, Zhou Z A, Gan M, et al. Process control technology of low NOx sintering based on coke pretreatment. J Cent South Univ, 2020, 27(2): 469 doi: 10.1007/s11771-020-4309-y [7] Que Z G, Ai X B, Wu S L. Reduction of NOx emission based on optimized proportions of mill scale and coke breeze in sintering process. Int J Miner Metall Mater, 2021, 28(9): 1453 doi: 10.1007/s12613-020-2103-3 [8] Yu Y, Zhu T Y, Liu X L. Progress of ultra-low emission technology for key processes of iron and steel industry in China. Iron Steel, 2019, 54(9): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190061于勇, 朱廷鈺, 劉霄龍. 中國鋼鐵行業重點工序煙氣超低排放技術進展. 鋼鐵, 2019, 54(9):1 doi: 10.13228/j.boyuan.issn0449-749x.20190061 [9] Long H M, Ding L, Qian L X, et al. Current situation and development trend of NOx and dioxins emission reduction in sintering flue gas. Chem Ind Eng Prog, 2022, 41(7): 3865龍紅明, 丁龍, 錢立新, 等. 燒結煙氣中NOx和二噁英的減排現狀及發展趨勢. 化工進展, 2022, 41(7):3865 [10] Guo Y H. Current station and tendency of purification and upgrading of blast furnace gas. J Iron Steel Res, 2020, 32(7): 525 doi: 10.13228/j.boyuan.issn1001-0963.20190274郭玉華. 高爐煤氣凈化提質利用技術現狀及未來發展趨勢. 鋼鐵研究學報, 2020, 32(7):525 doi: 10.13228/j.boyuan.issn1001-0963.20190274 [11] Wei Q L, Ge L J, Liu S J, et al. High air temperature and low nitrogen combustion technology of top burning catenary hot blast stove. Hebei Metall, 2021(2): 64 doi: 10.13630/j.cnki.13-1172.2021.0214魏前龍, 葛利軍, 劉世聚, 等. 頂燃式懸鏈線熱風爐高風溫低氮燃燒技術. 河北冶金, 2021(2):64 doi: 10.13630/j.cnki.13-1172.2021.0214 [12] Xu J M, Zhu J M, Li X L, et al. Reformation and practice of low nitrogen combustion method to reduce NOx emission in steel rolling reheating furnace. Energy Metall Ind, 2021, 40(3): 42 doi: 10.3969/j.issn.1001-1617.2021.03.010許京銘, 朱繼民, 李新林, 等. 軋鋼加熱爐采用低氮燃燒法降低NOx排放的改造與實踐. 冶金能源, 2021, 40(3):42 doi: 10.3969/j.issn.1001-1617.2021.03.010 [13] Dong S Y, Zhu B C. New technology of low NOx combustion in 7m battery and its application. Fuel Chem Process, 2020, 51(1): 50 doi: 10.16044/j.cnki.rlyhg.2020.01.019董少英, 朱百成. 7m焦爐低氮燃燒新技術及應用. 燃料與化工, 2020, 51(1):50 doi: 10.16044/j.cnki.rlyhg.2020.01.019 [14] Zhang B L, Zhang S G, Liu B. Effect of oxygen vacancies on ceria catalyst for selective catalytic reduction of NO with NH3. Appl Surf Sci, 2020, 529: 147068 doi: 10.1016/j.apsusc.2020.147068 [15] Zhang B L, Deng L F, Liu B, et al. Synergistic effect of cobalt and niobium in Co3-Nb-Ox on performance of selective catalytic reduction of NO with NH3. Rare Met, 2022, 41(1): 166 doi: 10.1007/s12598-021-01790-5 [16] Zhao L M, Liang L S, Cai J, et al. Application of low-temperature SCR flue gas denitrification technology in sintering process of Zhanjiang Iron & Steel. Sintering Pelletizing, 2022, 47(5): 89 doi: 10.13403/j.sjqt.2022.05.076趙利明, 梁利生, 蔡嘉, 等. 低溫SCR煙氣脫硝技術在湛江鋼鐵燒結工序的應用. 燒結球團, 2022, 47(5):89 doi: 10.13403/j.sjqt.2022.05.076 [17] Zhang S G, Zhang B L, Liu B, et al. A review of Mn-containing oxide catalysts for low temperature selective catalytic reduction of NOx with NH3: Reaction mechanism and catalyst deactivation. RSC Adv, 2017, 7(42): 26226 doi: 10.1039/C7RA03387G [18] Zhang B L, Zhang S Y, Zhang S G. The use of rare earths in catalysts for selective catalytic reduction of NOx. Prog Chem, 2022, 34(2): 301張柏林, 張生楊, 張深根. 稀土元素在脫硝催化劑中的應用. 化學進展, 2022, 34(2):301 [19] Han J, He X, Qin L, et al. NOx removal coupled with energy recovery in sintering plant. Ironmak Steelmak, 2014, 41(5): 350 doi: 10.1179/1743281213Y.0000000158 [20] Liu J H, Fan Z Y, Cheng H, et al. Integration and application of key technologies for ultra-low emission of flue gas in Qiangang Pelletizing Plant. China Metall, 2020, 30(10): 98 doi: 10.13228/j.boyuan.issn1006-9356.20200464劉建輝, 范正赟, 程華, 等. 遷鋼球團煙氣超低排放關鍵技術集成與應用. 中國冶金, 2020, 30(10):98 doi: 10.13228/j.boyuan.issn1006-9356.20200464 [21] Zhou M J, Zhang D H. Technology integration and practice of ultra-low emission of sintering flue gas in Baosteel. Iron Steel, 2020, 55(2): 144周茂軍, 張代華. 寶鋼燒結煙氣超低排放技術集成與實踐. 鋼鐵, 2020, 55(2):144 [22] Zhang C. Research and application of low temperature denitration process in coke oven flue gas. Pet Chem Constr, 2022, 44(2): 13 doi: 10.3969/j.issn.1672-9323.2022.02.005張翠. 焦爐煙氣中低溫脫硝工藝的研究與應用. 石油化工建設, 2022, 44(2):13 doi: 10.3969/j.issn.1672-9323.2022.02.005 [23] Li Y G, An L, Ren C T, et al. Semi-industrial test on low temperature SCR denitrification catalyst for sintering flue gas. China Metall, 2021, 31(2): 95李永光, 安璐, 任翠濤, 等. 燒結煙氣低溫SCR脫硝催化劑半工業化試驗. 中國冶金, 2021, 31(2):95 [24] Ji G, Dong W J, Li Q, et al. Study on ultra-low emission technology of NOx in Taigang sintering flue gas. Sintering Pelletizing, 2018, 43(2): 67冀崗, 董衛杰, 李強, 等. 太鋼燒結煙氣氮氧化物超低排放技術研究. 燒結球團, 2018, 43(2):67 [25] Zhou H, Ma P N, Lai Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process. J Clean Prod, 2020, 275: 122954 doi: 10.1016/j.jclepro.2020.122954 [26] Liu X L, Guo J X, Chu Y H, et al. Desulfurization performance of iron supported on activated carbon. Fuel, 2014, 123: 93 doi: 10.1016/j.fuel.2014.01.068 [27] Gao J X, Liu J, Zeng Y, et al. Application and analysis of dry activated coke(carbon) sintering flue gas purification technology in iron and steel industry—Process and technical and economical analysis. Sintering Pelletizing, 2012, 37(1): 65 doi: 10.3969/j.issn.1000-8764.2012.01.017高繼賢, 劉靜, 曾艷, 等. 活性焦(炭)干法燒結煙氣凈化技術在鋼鐵行業的應用與分析(Ⅰ)——工藝與技術經濟分析. 燒結球團, 2012, 37(1):65 doi: 10.3969/j.issn.1000-8764.2012.01.017 [28] Wang J J, Wang Y J, She X F, et al. Numerical study on the distribution of flue gas residence time in the desulfurization and denitrification system by the optimization of the model. Int J Chem React Eng, 2022, 20(10): 1095 doi: 10.1515/ijcre-2022-0043 [29] Wu S L, Zhang W L, Hu Z J. Properties change of activated coke for sintering flue gas purification in cyclic removal of SO2 and NOx. J Iron Steel Res Int, 2021, 28(6): 641 doi: 10.1007/s42243-020-00486-x [30] Xie W, Li X L, Lu X D, et al. Mechanism and development trend of desulfurization & denitrification of activated carbon used in flue gas purification. Clean Coal Technol, 2021, 27(6): 1解煒, 李小亮, 陸曉東, 等. 煙氣凈化用活性炭脫硫脫硝機理研究與發展趨勢. 潔凈煤技術, 2021, 27(6):1 [31] Xiang S Y, Zhang Z H, Xing X D, et al. Research progress of activated carbon for desulfurization and denitrification of sintering flue gas [J/OL]. J Iron Steel Res (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html向思羽, 張朝暉, 邢相棟, 等. 燒結煙氣脫硫脫硝活性炭的研究進展[J/OL]. 鋼鐵研究學報 (2022-07-14) [2022-11-26]. https://kns.cnki.net/kcms/detail/11.2133.tf.20220713.0956.002.html [32] Han J, Yan Z H, Shao J G. Technical characteristics of counter flow active carbon-flue gas desulphurization and denitrification process and its application. Sintering Pelletizing, 2018, 43(6): 13韓健, 閻占海, 邵久剛. 逆流式活性炭煙氣脫硫脫硝技術特點及應用. 燒結球團, 2018, 43(6):13 [33] Guo Y N. Application of activated carbon desulfurization and denitrification technology in coke oven flue gas. Inner Mongolia Coal Econ, 2022(12): 115 doi: 10.3969/j.issn.1008-0155.2022.12.039郭雅楠. 活性炭脫硫脫硝技術在焦爐煙氣中的應用. 內蒙古煤炭經濟, 2022(12):115 doi: 10.3969/j.issn.1008-0155.2022.12.039 [34] Jian K, Liu R, Wang D C. Application of activated carbon integrated desulfurization and denitrification in WISCO Coking // Proceedings of the 14th Symposium (2020) on Energy Conservation & Environment Protection and CDQ Technology in Coking Industry. Taian, 2020: 141簡科, 劉睿, 王大春. 活性炭一體化脫硫脫硝在武鋼焦化的應用 // 2020年(第十四屆)焦化節能環保及干熄焦技術研討會. 泰安, 2020: 141 [35] Han K, Cao J G, Xiang H F, et al. Application of activated carbon desulfurization and denitrification technology in coking plant of Anyang steel. Henan Chem Ind, 2020, 37(3): 37韓礦, 曹紀剛, 向海飛, 等. 活性炭脫硫脫硝技術在安鋼焦化廠的應用. 河南化工, 2020, 37(3):37 [36] Fu W J, Fu Y M. Application of activated coke desulfurization and denitrification technology in sintering flue gas engineering. Shandong Chem Ind, 2015, 44(22): 178 doi: 10.3969/j.issn.1008-021X.2015.22.070傅文娟, 傅月梅. 活性焦脫硫脫硝技術在燒結煙氣工程上的應用. 山東化工, 2015, 44(22):178 doi: 10.3969/j.issn.1008-021X.2015.22.070 [37] Jiang J, Li Q, Deng C H, et al. Application of different DeSOx and DeNOx technologies on Masteel coke plant. Fuel Chem Process, 2022, 53(1): 63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023江靜, 李強, 鄧成豪, 等. 兩種脫硫脫硝技術在馬鋼的應用. 燃料與化工, 2022, 53(1):63 doi: 10.3969/j.issn.1001-3709.2022.1.rlyhg202201023 [38] Rovira M, Engvall K, Duwig C. Detailed numerical simulations of low-temperature oxidation of NOx by ozone. Fuel, 2021, 303: 121238 doi: 10.1016/j.fuel.2021.121238 [39] Ji R J, Xu W Q, Wang J, et al. Research progress of ozone oxidation denitrification technology. CIESC J, 2018, 69(6): 2353紀瑞軍, 徐文青, 王健, 等. 臭氧氧化脫硝技術研究進展. 化工學報, 2018, 69(6):2353 [40] Zou Y, Liu X L, Zhu T Y, et al. Simultaneous removal of NOx and SO2 by MgO combined with O3 oxidation: The influencing factors and O3 consumption distributions. ACS Omega, 2019, 4(25): 21091 doi: 10.1021/acsomega.9b02502 [41] Yamamoto Y, Yamamoto H, Takada D, et al. Simultaneous removal of NOx and SOx from flue gas of a glass melting furnace using a combined ozone injection and semi-dry chemical process. Ozone:Sci Eng, 2016, 38(3): 211 doi: 10.1080/01919512.2015.1115335 [42] Mok Y S, Lee H J. Removal of sulfur dioxide and nitrogen oxides by using ozone injection and absorption-reduction technique. Fuel Process Technol, 2006, 87(7): 591 doi: 10.1016/j.fuproc.2005.10.007 [43] Yang Y X, Xue X L, Liu Y, et al. Orthogonal experiments on ozonation denitration of iron-steel sintering flue gas. Environ Sci Technol, 2018, 41(Suppl 1): 139楊穎欣, 薛學良, 劉勇, 等. 鋼鐵燒結煙氣臭氧氧化脫硝正交實驗研究. 環境科學與技術, 2018, 41(增刊 1):139 [44] Fan B, Meng Y, Sun Y H. Oxidation denitration technology and application based on dense phase semi dry desulfurization process. China Steel Focus, 2020(21): 33范博, 孟宇, 孫宇航. 基于密相半干法脫硫工藝的氧化脫硝技術及應用. 冶金管理, 2020(21):33 [45] Guo H K. Co-denitration technology and application of COA in flue gas of 180 m2 sintering machine. Energy Conserv Environ Prot, 2018(3): 68 doi: 10.3969/j.issn.1009-539X.2018.03.018郭厚焜. 180 m2燒結機煙氣COA協同脫硝技術及應用. 節能與環保, 2018(3):68 doi: 10.3969/j.issn.1009-539X.2018.03.018 [46] Zhong L, Hu X T, Zhu T L, et al. Industrial application of the ozone oxidation and synergistic absorption technology for desulfurization and denitration. China Environ Prot Ind, 2021(7): 46 doi: 10.3969/j.issn.1006-5377.2021.07.013鐘璐, 胡小吐, 朱天樂, 等. 臭氧氧化協同吸收脫硫脫硝技術的工業應用. 中國環保產業, 2021(7):46 doi: 10.3969/j.issn.1006-5377.2021.07.013 [47] Wang T G. Comparative analysis of SCR denitrification and COA ozone synergistic denitrification process for sintering flue gas. Sci Technol Innov, 2020(6): 13 doi: 10.3969/j.issn.1673-1328.2020.06.008王天廣. 燒結煙氣SCR脫硝與COA臭氧協同脫硝工藝對比分析. 科學技術創新, 2020(6):13 doi: 10.3969/j.issn.1673-1328.2020.06.008 [48] World Metals. Review of China's ironmaking technology development in 2021[J/OL]. Mysteel (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html世界金屬導報. 2021年我國煉鐵技術發展評述[J/OL]. 我的鋼鐵 (2022-03-14) [2022-11-26]. https://news.mysteel.com/22/0314/17/C69D408F112D28783.html [49] Wen B, Song B H, Sun G G, et al. Technical progress of denitration for iron-steel sintering flue gas. Environ Eng, 2017, 35(1): 103溫斌, 宋寶華, 孫國剛, 等. 鋼鐵燒結煙氣脫硝技術進展. 環境工程, 2017, 35(1):103 [50] Yao G J, Wei M R, Liu J L, et al. Application researches on ball group vertical stove desulphurization project. Ind Saf Dust Control, 2005, 31(4): 38 doi: 10.3969/j.issn.1001-425X.2005.04.016姚國建, 韋鳴瑞, 柳建龍, 等. 球團豎爐煙氣脫硫工程應用研究. 工業安全與環保, 2005, 31(4):38 doi: 10.3969/j.issn.1001-425X.2005.04.016 [51] Qiao J F. Technology development and industry application progress of desulfurization and denitrification from coke oven flue gas. Nat Gas Chem Ind, 2020, 45(4): 130喬建芬. 焦爐煙氣脫硫脫硝技術及產業化應用進展. 天然氣化工(C1化學與化工), 2020, 45(4):130 -