<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

復合粘結劑對球團高溫固結的影響及機理

韓鳳光 楊濤 趙賀喜 汪名赫 王毅璠 龍紅明 雷杰 姜濤

韓鳳光, 楊濤, 趙賀喜, 汪名赫, 王毅璠, 龍紅明, 雷杰, 姜濤. 復合粘結劑對球團高溫固結的影響及機理[J]. 工程科學學報, 2023, 45(9): 1450-1458. doi: 10.13374/j.issn2095-9389.2022.11.17.003
引用本文: 韓鳳光, 楊濤, 趙賀喜, 汪名赫, 王毅璠, 龍紅明, 雷杰, 姜濤. 復合粘結劑對球團高溫固結的影響及機理[J]. 工程科學學報, 2023, 45(9): 1450-1458. doi: 10.13374/j.issn2095-9389.2022.11.17.003
HAN Fengguang, YANG Tao, ZHAO Hexi, WANG Minghe, WANG Yifan, LONG Hongming, LEI Jie, JIANG Tao. Effects and mechanism of composite binder on high-temperature consolidation of pellets[J]. Chinese Journal of Engineering, 2023, 45(9): 1450-1458. doi: 10.13374/j.issn2095-9389.2022.11.17.003
Citation: HAN Fengguang, YANG Tao, ZHAO Hexi, WANG Minghe, WANG Yifan, LONG Hongming, LEI Jie, JIANG Tao. Effects and mechanism of composite binder on high-temperature consolidation of pellets[J]. Chinese Journal of Engineering, 2023, 45(9): 1450-1458. doi: 10.13374/j.issn2095-9389.2022.11.17.003

復合粘結劑對球團高溫固結的影響及機理

doi: 10.13374/j.issn2095-9389.2022.11.17.003
基金項目: 國家自然科學基金資助項目(52174290);安徽省自然科學基金杰出青年資助項目(2208085J19)
詳細信息
    通訊作者:

    龍紅明, E-mail: yaflhm@126.com

    雷杰, E-mail: leijie@ahut.edu.cn

  • 中圖分類號: TQ132.32

Effects and mechanism of composite binder on high-temperature consolidation of pellets

More Information
  • 摘要: 膨潤土是球團礦生產過程中的主要粘結劑,能顯著改善原料成球性、提升球團質量,但較高的SiO2和Al2O3含量會造成煉鐵生產渣量增加。添加少量有機粘結劑替代部分膨潤土已成為改善球團性能的必要手段。本文考察了有機粘結劑P替代部分膨潤土對球團高溫強度的影響,結合激光閃射法和熱重法(TG)研究了有機粘結劑對磁鐵礦球團內部結構及傳熱、傳質的影響。結果表明,復合粘結劑可以替代部分膨潤土,適量有機組分的增加有利于預熱球、焙燒球強度的提升和球團的氧化。主要原因是有機粘結劑P經過高溫后熱解,并在球團內部形成適量孔隙,球團熱傳導系數降低,內部升溫梯度減緩,避免了球團表層因過快氧化結晶而形成致密的氧化層。同時,細小的孔隙有利于氧氣進入球團內部,促進Fe3O4氧化成Fe2O3,氧化分數$ f $TGA隨著有機粘結劑P的添加而逐漸升高,由90.80%提至92.17%。

     

  • 圖  1  有機粘結劑P的顆粒微觀形貌

    Figure  1.  Partical micromorphology of organic binder P

    圖  2  有機粘結劑P熱重分析和差熱分析

    Figure  2.  Thermogravimetric and differential thermal analysis of organic binder P

    圖  3  膨潤土F添加量對預熱、焙燒球強度的影響

    Figure  3.  Effect of bentonite F addition on the compressive strength of preheated and roasted pellets

    圖  4  不同膨潤土F添加量焙燒球團的顯微結構. (a) 1.1%F; (b) 1.2%F; (c) 1.3%F; (d) 1.4%F; (e) 2.0%F

    Figure  4.  Microstructure of roasted pellets with different bentonite F additions: (a) 1.1%F; (b) 1.2%F; (c) 1.3%F; (d) 1.4%F; (e) 2.0%F

    圖  5  復合粘結劑添加量對預熱、焙燒球強度的影響

    Figure  5.  Effect of compound binder P addition on the strength of preheated and roasted pellets

    圖  6  不同復合粘結劑添加量焙燒球團的顯微結構. (a) 1.2%F; (b) 1.2%F + 0.02%P; (c) 1.2%F + 0.024%P; (d) 1.2%F + 0.028%P

    Figure  6.  Microstructure of roasted pellets with different composite binder additions: (a)1.2%F; (b) 1.2%F + 0.02%P; (c) 1.2%F + 0.024%P; (d) 1.2%F + 0.028%P

    圖  7  添加復合粘結劑的磁鐵礦球團氧化未反應核收縮模型

    Figure  7.  Oxidized unreacted nuclear contraction model for magnetite pellets with the addition of a composite binder

    圖  8  激光閃射法示意圖

    Figure  8.  Schematic of laser flash method

    圖  9  不同復合粘結劑添加量焙燒球團的氧化區域.(a)球團外層(1—1.2% F,2—1.2% F + 0.02% P,3—1.2% F + 0.04% P,4—1.2% F + 0.06% P);(b)球團內部(1—1.2% F,2—1.2% F + 0.02% P,3—1.2% F + 0.04% P,4—1.2% F + 0.06% P)

    Figure  9.  Oxidation zone of roasted pellets with different compound binder additions: (a) outer layer of pellets (1—1.2% F, 2—1.2% F + 0.02% P, 3—1.2% F + 0.04% P, 4—1.2% F + 0.06% P); (b) inner layer of pellets (1—1.2% F, 2—1.2% F + 0.02% P, 3—1.2% F + 0.04% P, 4—1.2% F + 0.06% P)

    圖  10  不同有機粘結劑組分球團的TG曲線(a)和相應的氧化分數$ f $TGA(b)

    Figure  10.  TG curves (a) and oxidation fraction $ f $TGA (b) of pellets with different organic binder additions

    表  1  原料化學成分及配比(質量分數)

    Table  1.   Chemical composition and ratio of raw materials %

    Iron oreTFeFeOSiO2Al2O3CaOMgOP2O5SxLOIRatio
    ore-A65.1524.894.951.660.400.540.010.08?0.7455
    ore-B65.4625.833.760.631.021.620.100.20?1.9125
    ore-C65.7526.506.570.840.300.480.010.05?0.4720
    下載: 導出CSV

    表  2  原料的粒度分布及比表面積

    Table  2.   Particle size composition and specific surface area of raw materials

    Iron oreParticle size composition
    (mass fraction)/%
    Specific surface area/(cm2?g?1)
    +74 μm?74 μm~+45 μm?45 μm
    ore-A6.015.278.81408
    ore-B0.54.794.81466
    ore-C6.413.380.31568
    下載: 導出CSV

    表  3  膨潤土F物化特性

    Table  3.   Physical and chemical properties of bentonite F

    Mass fraction of
    montmorillonite/%
    Methylene blue adsorbed
    (per 100 g)/g
    Water absorption
    (2 h)/%
    Swelling coefficient/(mL·g?1)Colloid index
    (per 15 g)/mL
    49.0721.6949625580
    下載: 導出CSV

    表  4  不同膨潤土F添加量的焙燒球團孔隙度

    Table  4.   Porosity of roasted pellets with different bentonite F additions

    Mass fraction of Bentonite F/%Porosity/%
    1.121.82
    1.220.05
    1.319.42
    1.419.42
    2.015.68
    下載: 導出CSV

    表  5  復合粘結劑添加量的焙燒球團孔隙度

    Table  5.   Porosity of roasted pellets with different composite binder additions

    Mass fraction of composite binder /%Porosity/%
    0.00020.05
    0.02017.82
    0.02416.56
    0.02816.02
    下載: 導出CSV

    表  6  復合粘結劑對球團的傳熱性能的影響

    Table  6.   Effect of composite binder on the heat transfer performance of pellets

    Mass fraction of
    composite binder
    Sample thickness/
    mm
    Sample density/
    (g·cm?3)
    Thermal diffusivity/
    (mm2·s?1)
    Heat transfer coefficient/
    (W·m?1·K?1)
    Specific heat capacity/
    (J·g?1·K?1)
    1.2% F2.423.40.3210.5510.505
    1.2% F + 0.02% P2.463.30.3090.5300.504
    1.2% F + 0.04% P2.463.40.2820.4810.502
    1.2% F + 0.06% P2.463.40.2660.4540.502
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Halt J A, Kawatra S K. Review of organic binders for iron ore concentrate agglomeration. Min Metall Explor, 2014, 31(2): 73
    [2] Qian L X, Yang T, Long H M, et al. Recycling of waste V2O5–WO3/TiO2 catalysts in the iron ore sintering process via a preballing approach. ACS Sustainable Chem Eng, 2021, 9(48): 16373 doi: 10.1021/acssuschemeng.1c06271
    [3] Lei J, Wang M H, Zhou J H, et al. Mechanism and structure-activity relationship of new composite binders for improving the quality of green pellets. Chin J Eng, 2023, 45(1): 91

    雷杰, 汪名赫, 周江虹, 等. 新型復合粘結劑提高生球質量的作用機理及構效關系. 工程科學學報, 2023, 45(1):91
    [4] Wang Y F, Ding L, Shi Q, et al. Volatile organic compounds (VOC) emissions control in iron ore sintering process: Recent progress and future development. Chem Eng J, 2022, 448: 137601 doi: 10.1016/j.cej.2022.137601
    [5] Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630 doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112005

    張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630 doi: 10.3321/j.issn.1001-053X.2021.12.bjkjdxxb202112005
    [6] Srivastava U, Kawatra S K, Eisele T C. Study of organic and inorganic binders on strength of iron oxide pellets. Metall Mater Trans B, 2013, 44(4): 1000 doi: 10.1007/s11663-013-9838-4
    [7] Mcgannon H E. The Making, Shaping and Treating of Steel. Pittsburgh: United States Steel, 1971
    [8] Li Q, Ma Y H, Tang Y H, et al. Research progress of organic binder for iron ore pellets. Iron steel, 2022, 57(11): 11

    李騫, 馬永和, 唐銀華, 等. 鐵礦球團用有機黏結劑研究進展. 鋼鐵, 2022, 57(11):11
    [9] Claremboux V, Kawatra S K. Iron ore pelletization: Part III. Organic binders. Miner Process Extr Metall Rev, 2023, 44(2): 138 doi: 10.1080/08827508.2022.2029431
    [10] Halt J A, Kawatra S K. Does the zeta potential of an iron ore concentrate affect the strength and dustiness of unfired and fired pellets? Miner Process Extr Metall Rev, 2017, 38(2): 132
    [11] de Moraes S L, de Lima J R B, Neto J B F. Effect of colloidal agents in iron ore pelletizing. Miner Process Extr Metall Rev, 2018, 39(6): 414 doi: 10.1080/08827508.2018.1481060
    [12] de Moraes S L, de Lima J R B, Neto J B F, et al. Binding mechanism in green iron ore pellets with an organic binder. Miner Process Extr Metall Rev, 2020, 41(4): 247 doi: 10.1080/08827508.2019.1604521
    [13] Qiu G Z, Jiang T, Li H X, et al. Functions and molecular structure of organic binders for iron ore pelletization. Colloids Surf A Physicochem Eng Aspects, 2003, 224(1-3): 11 doi: 10.1016/S0927-7757(03)00264-4
    [14] Sivrikaya O, Arol A I. Pelletization of magnetite ore with colemanite added organic binders. Powder Technol, 2011, 210(1): 23 doi: 10.1016/j.powtec.2011.02.007
    [15] Fan X H, Yang G M, Chen X L, et al. Effect of carboxymethyl cellulose on the drying dynamics and thermal cracking performance of iron ore green pellets. Powder Technol, 2014, 267: 11 doi: 10.1016/j.powtec.2014.07.011
    [16] Liu S, Zhang Y B, Su Z J, et al. Improving the properties of magnetite green pellets with a novel organic composite binder. Materials, 2022, 15(19): 6999 doi: 10.3390/ma15196999
    [17] Dai X, Theppitak S, Yoshikawa K. Pelletization of carbonized wood using organic binders with biomass gasification residue as additive. Energy Fuels, 2018, 33(1): 323
    [18] Li C X, Bai Y, Ren R C, et al. Study of the mechanism for improving green pellet performance with compound binders. Physicochem Probl Mi, 2019, 55(1): 153
    [19] Kotta A B, Patra A, Kumar M, et al. Effect of molasses binder on the physical and mechanical properties of iron ore pellets. Int J Miner Metall Mater, 2019, 26(1): 41 doi: 10.1007/s12613-019-1708-x
    [20] Li H X, Wang D Z, Hu Y H, et al. The mechanism of improving pellet strength by carboxyl methlated amylum. J Central South Univ Technol (Nat Sci), 2001, 32(4): 351

    李宏煦, 王淀佐, 胡岳華, 等. 羧甲基淀粉鈉提高球團強度的機理. 中南工業大學學報(自然科學版), 2001, 32(4):351
    [21] Zhao H X, Zhou F S, Bao X C, et al. A review on the humic substances in pelletizing binders: Preparation, interaction mechanism, and process characteristics. ISIJ Int, 2023, 63(2): 205 doi: 10.2355/isijinternational.ISIJINT-2022-306
    [22] Huang Z C, Wang Y M, Chai B, et al. Preparation of oxide pellets with fibrosis bentonite and its mechanism. J Central South Univ (Sci Technol), 2014, 45(7): 2145

    黃柱成, 王雨蒙, 柴斌, 等. 纖維化膨潤土強化氧化球團制備及其機理. 中南大學學報(自然科學版), 2014, 45(7):2145
    [23] Hou E J, Weng X Y, Fan X H. Study on strengthening preparation of oxide pellets with fibration composite bentonite. Sinter Pelletizing, 2019, 44(4): 40

    侯恩儉, 翁興洋, 范曉慧. 纖維化復合膨潤土強化氧化球團制備研究. 燒結球團, 2019, 44(4):40
    [24] Chen X L, Gan M, Fan X H, et al. Concretion properties of organic-binder oxidate pellets and strengthen measures. J Central South Univ (Sci Technol), 2009, 40(3): 550

    陳許玲, 甘敏, 范曉慧, 等. 有機粘結劑氧化球團固結特性及強化措施. 中南大學學報(自然科學版), 2009, 40(3):550
    [25] Chen X L, Liu S, Gan M, et al. Roasting behavior and enhancing technology of high-titanium pellets. Chin J Eng, 2016, 38(7): 920

    陳許玲, 劉樹, 甘敏, 等. 高鈦球團焙燒行為及其強化技術. 工程科學學報, 2016, 38(7):920
  • 加載中
圖(10) / 表(6)
計量
  • 文章訪問數:  323
  • HTML全文瀏覽量:  130
  • PDF下載量:  102
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-11-17
  • 網絡出版日期:  2023-01-31
  • 刊出日期:  2023-09-25

目錄

    /

    返回文章
    返回