-
摘要: 在全球進入低碳發展的新階段的背景下,分析了不同時期的技術變革影響世界鋼鐵工業中心轉移的歷史發展趨勢,提出了在全球碳中和背景下鋼鐵工業所面臨的機遇與挑戰。從國際、國內鋼鐵工業低碳發展現狀出發,結合中國典型鋼鐵企業的綠色制造實踐,及低碳發展規劃,闡述了當前中國鋼鐵行業在低碳綠色發展方面所做出的探索與貢獻,為鋼鐵企業助力國家“碳達峰、碳中和”目標的實現提供實踐案例。建議未來發展路徑可從四方面開展,一是在“十三五”超低排放成效的基礎上向減污降碳過渡,推廣燒結煙氣循環及高比例球團冶煉等技術;二是實施以氫能為中心的能源結構的變革,開展多元化制氫技術,并配套加氫站網絡的建設,加速綠色物流體系的構建,并在探索氫冶金技術的實踐中引領行業發展;三是打造低碳綠色產業生態圈,從整個產業鏈、上下游協同出發,開發全生命周期評價平臺及產品,并結合上下游重點企業全面推進綠色制造;四是行業突破性技術研發,加強產學研合作,整合全球創新資源。最后,在上述低碳發展路徑的基礎上,提出未來鋼鐵行業需要重視的發展建議。Abstract: Coping with climate change is a common topic facing the world. The steel industry is an important basic industry of the national economy; however, it is also a resource-intensive and typical high-carbon-emission industry. Low-carbon green is the inevitable choice and the only way for its high-quality development. Under the background that the world has entered a new stage of low-carbon development, this study analyzes the historical trend that the transfer of steel industry centers in the world is accompanied by technological change. In the new stage that China has become a steel center and will continue for a long time, it is faced with the demand for a significant reduction in carbon emissions, intensity, energy consumption, green trade barriers (such as carbon border tax), green procurement pressure, and breakthrough technology research and development challenges. This study outlines the low-carbon development plan and path of the international and domestic steel industry and focuses on the analysis of the exploration and contribution made by China’s steel industry in low-carbon green development in recent years. This study also aims to analyze the transformation of the future steel industry to low-carbon development based on the continuation of the practical achievements of green manufacturing with practical cases and summarize four types of development paths, which provide practical cases for iron and steel enterprises to help achieve the national goal of “carbon peak, carbon neutral” . The first path is to transition from ultralow-emission-centered development to pollution and carbon reduction and promote sintering flue gas circulation and high-proportion pellet smelting, selective circulation purification of sintering flue gas and waste heat utilization, and other technologies. The second path is to reform the energy structure with hydrogen energy as the center in the energy field, research and develop low-cost, large-scale hydrogen production technology, build a network of hydrogen refueling stations, accelerate the construction of green logistics systems, and lead the industry development in the practice of exploring hydrogen metallurgy technology. The third path is to rely on the cycle sustainability of steel materials (starting from the entire industrial chain and upstream and downstream coordination), utilize a full life cycle assessment platform and products, create a low-carbon green industrial ecosystem, and comprehensively promote green manufacturing in combination with upstream and downstream key enterprises. The fourth path is to conduct cooperative research and development of breakthrough technologies (such as carbon capture utilization and storage and other cutting-edge technologies) to strengthen the cooperation between industry, university, and research and integrate global innovation resources. Finally, based on the current low-carbon development trend of the steel industry and the proposed low-carbon development paths, this study analyzes the impact of international situations (such as the EU carbon border regulation mechanism on China’s steel industry), promotes the full life cycle assessment of steel materials, encourages the construction of hydrogen energy development strategies and energy source systems, establishes a green industrial chain, and recommends collaborative carbon reduction.
-
Key words:
- iron and steel industry /
- low-carbon green /
- practice /
- route /
- cases
-
圖 4 “近零排放”工藝流程設計規劃. (a)可再生能源制氫到氫基豎爐冶煉;(b)高效、低碳電弧爐冶煉;(c)薄板坯連鑄連軋工藝
Figure 4. Flowchart of the designed “Near-zero emission” process: (a) hydrogen production from renewable energy to hydrogen-based shaft furnace smelting; (b) high-efficiency and low-carbon electric arc furnace smelting; (c) thin-slab continuous casting and rolling process
表 1 鋼鐵行業多工序多污染物超低排放控制技術指標
Table 1. Technical indicators of multiprocess and multipollutant ultralow emission control in the iron and steel industry
Emission standard (PM/SO2/NOx) Sintering process/ (mg·m?3) Pelletizing process/(mg·m?3) Coking process/(mg·m?3) Indicators of the HBIS Group TANGSTEEL Company 10/10/40 5/20/30 8/15/60 China’s ultralow emission standards 10/35/50 10/35/50 10/30/150 The most stringent standards abroad 10/200/100 10/200/100 20/200/350 259luxu-164 -
參考文獻
[1] Yu Y. Development Path of Steel Industry. Beijing: Metallurgical Industry Press, 2021于勇. 鋼鐵軌跡. 北京: 冶金工業出版社, 2021 [2] Li Y J, Shi H E, Gao P. Enlightenment from the development of American iron and steel industry. China Steel, 2008(7): 18 doi: 10.3969/j.issn.1672-5115.2008.07.007李擁軍, 史慧恩, 高鵬. 美國鋼鐵工業發展對我們的啟示. 中國鋼鐵業, 2008(7):18 doi: 10.3969/j.issn.1672-5115.2008.07.007 [3] Yu Y. Steel makes the world better. China Steel, 2019(9): 14 doi: 10.3969/j.issn.1672-5115.2019.09.007于勇. 鋼鐵讓世界更加美好. 中國鋼鐵業, 2019(9):14 doi: 10.3969/j.issn.1672-5115.2019.09.007 [4] Zheng G D, Chen Q S, Xing J Y, et al. The development path and enlightenment of the steel industry in typical countries. Nat Resour Econ China, 2021, 34(8): 51鄭國棟, 陳其慎, 邢佳韻, 等. 典型國家鋼鐵產業發展路徑與啟示. 中國國土資源經濟, 2021, 34(8):51 [5] IEA. Iron and steel technology roadmap [EB/OL]. Sciencepaper Online (2020-10-01) [2022-10-05]. https://www.iea.org/reports/iron-and-steel-technology-roadmapIEA. 鋼鐵技術路線圖[EB/OL]. 科技論文在線(2020-10-01) [2022-10-05]. https://www.iea.org/reports/iron-and-steel-technology-roadmap [6] Project comprehensive report preparation team. Comprehensive report on China’s long-term low-carbon development strategy and transformation path. China Popul Resour Environ, 2020, 30(11): 1項目綜合報告編寫組. 《中國長期低碳發展戰略與轉型路徑研究》綜合報告. 中國人口·資源與環境, 2020, 30(11):1 [7] Xu Y M, Li X Y. Potential implications of EU’s Carbon Border Adjustment Mechanism for Sino-EU trade and suggested policies for China. J Int Econ Coop, 2021(5): 25許英明, 李曉依. 歐盟碳邊境調節機制對中歐貿易的影響及中國對策. 國際經濟合作, 2021(5):25 [8] Wang Y Y, Zhang X T, Zou L, et al. An introduction to the content and implications of EU’s Carbon Border Adjustment Mechanism and proposed countermeasures for China. J Int Econ Coop, 2021(5): 13王優酉, 張曉通, 鄒磊, 等. 歐盟碳稅新政: 內容、影響及應對. 國際經濟合作, 2021(5):13 [9] Li X C, Li J Y, Huo D M, et al. Concerns on drafting standard for evaluating product carbon footprint of China’s steel industry. China Metall, 2021, 31(12): 1李新創, 李晉巖, 霍咚梅, 等. 關于中國鋼鐵行業產品碳足跡評價標準化工作的思考. 中國冶金, 2021, 31(12):1 [10] Wang X D, Zhang C, Sun Y J, et al. Application practice of green manufacturing technology in tangsteel new district of hbis group. Environ Eng, 2022, 40(7): 179 doi: 10.13205/j.hjgc.202207026王新東, 張弛, 孫宇佳, 等. 河鋼唐鋼新區綠色制造技術應用實踐. 環境工程, 2022, 40(7):179 doi: 10.13205/j.hjgc.202207026 [11] Li J X, Wang X D, Li S J. Progress and prospects of steelmaking technology in Hesteel. Steelmaking, 2019, 35(4): 1李建新, 王新東, 李雙江. 河鋼煉鋼技術進步與展望. 煉鋼, 2019, 35(4):1 [12] Wang X D, Li J X, Hu Q C. Application practice of source and process sulfur-nitrate reduction technology based on optimization of blast furnace charge structure. Iron &Steel, 2019, 54(12): 104王新東, 李建新, 胡啟晨. 基于高爐爐料結構優化的源頭減排技術及應用. 鋼鐵, 2019, 54(12):104 [13] Wang X D, Tian J L, Song C Y. Innovative practice technology and outlook in large iron and steel enterprise green manufacturing. Iron &Steel, 2018, 53(2): 1 doi: 10.13228/j.boyuan.issn0449-749x.20170533王新東, 田京雷, 宋程遠. 大型鋼鐵企業綠色制造創新實踐與展望. 鋼鐵, 2018, 53(2):1 doi: 10.13228/j.boyuan.issn0449-749x.20170533 [14] Wang X D. Planning and design of HBIS Group Tangsteel new district with goal of “Green, Intelligent and Brand”. Iron &Steel, 2021, 56(2): 12 doi: 10.13228/j.boyuan.issn0449-749x.20200554王新東. 以“綠色化、智能化、品牌化”為目標規劃設計河鋼唐鋼新區. 鋼鐵, 2021, 56(2):12 doi: 10.13228/j.boyuan.issn0449-749x.20200554 [15] Yu Y. Brand building illuminates the road of high-quality development. Economy, 2020(8): 71于勇. 品牌建設照亮高質量發展之路. 經濟, 2020(8):71 [16] Wang X D. Paths and measures of technology upgrading in the new development stage of hbis. Hebei Metall, 2022(1): 1 doi: 10.13630/j.cnki.13-1172.2022.0101王新東. 河鋼新發展階段技術升級的路徑與措施. 河北冶金, 2022(1):1 doi: 10.13630/j.cnki.13-1172.2022.0101 [17] Wang X D, Hou C J, Tian J L. Application and practice of multi-pollutant cooperative control technology for flue gas in iron and steel industry. Chin J Process Eng, 2020, 20(9): 997 doi: 10.12034/j.issn.1009-606X.219317王新東, 侯長江, 田京雷. 鋼鐵行業煙氣多污染物協同控制技術應用實踐. 過程工程學報, 2020, 20(9):997 doi: 10.12034/j.issn.1009-606X.219317 [18] Wan Y F, Cui Y Y, Wu X F, et al. Characteristics of carbon dioxide emission in Beijing-Tianjin-Hebei region and its synergistic reduction potential with air pollutants. J Cap Norm Univ (Nat Sci Ed), 2022, 43(4): 46 doi: 10.19789/j.1004-9398.2022.04.008萬蕓菲, 崔陽陽, 吳雪芳, 等. 京津冀區域二氧化碳排放特征及其與大氣污染物協同減排潛力分析. 首都師范大學學報(自然科學版), 2022, 43(4):46 doi: 10.19789/j.1004-9398.2022.04.008 [19] Xue T, Liu J, Zhang Q, et al. Rapid improvement of PM2.5 pollution and associated health benefits in China during 2013-2017. Sci Sin (Terrae), 2020, 50(4): 441 doi: 10.1360/SSTe-2019-0245薛濤, 劉俊, 張強, 等. 2013—2017年中國PM2.5污染的快速改善及其健康效益. 中國科學:地球科學, 2020, 50(4):441 doi: 10.1360/SSTe-2019-0245 [20] Zhu T Y, Liu X L. Technical considerations on the transition from "ultra-low emissions" to "pollution reduction and carbon reduction" in China's steel industry Chin J Process Eng, 2022, 22(10): 1360朱廷鈺, 劉霄龍. 中國鋼鐵行業“超低排放”向“減污降碳”過渡的技術思考. 過程工程學報, 2022, 22(10): 1360 [21] Che Y M, Cao L X, Liu J Z. Large scale hydrogen production and its application and prospect in iron and steel industry. China Metall, 2022, 32(9): 1 doi: 10.13228/j.boyuan.issn1006-9356.20220201車彥民, 曹莉霞, 劉金哲. 氫的大規模制備及在鋼鐵行業的應用和展望. 中國冶金, 2022, 32(9):1 doi: 10.13228/j.boyuan.issn1006-9356.20220201 [22] Lu X G, Zhang Y W, Zhu K, et al. Development and key problems of hydrogen metallurgy. Chin J Nat, 2022, 44(4): 251 doi: 10.3969/j.issn.0253-9608.2022.04.001魯雄剛, 張玉文, 祝凱, 等. 氫冶金的發展歷程與關鍵問題. 自然雜志, 2022, 44(4):251 doi: 10.3969/j.issn.0253-9608.2022.04.001 [23] Zhang J L. Low carbon ironmaking and hydrogen metallurgy in the context of carbon neutralization // Proceedings of the 13th China Iron and Steel Annual Conference. Chongqing, 2022: 49張建良. 碳中和背景下的低碳煉鐵與氫冶金. 第十三屆中國鋼鐵年會論文集. 重慶, 2022: 49 [24] Zhu G H. A review on hydrogen-enriched reduction in blast furnace. Iron Steel, 2020, 55(10): 1 doi: 10.13228/j.boyuan.issn0449-749x.20190532朱國海. 高爐富氫還原研究. 鋼鐵, 2020, 55(10):1 doi: 10.13228/j.boyuan.issn0449-749x.20190532 [25] Wang G, Wang J S, Zuo H B, et al. Effect of blast furnace gas recycling with hydrogen injection on low carbon development of Chinese ironmaking. China Metall, 2019, 29(10): 1 doi: 10.13228/j.boyuan.issn1006-9356.20190107王廣, 王靜松, 左海濱, 等. 高爐煤氣循環耦合富氫對中國煉鐵低碳發展的意義. 中國冶金, 2019, 29(10):1 doi: 10.13228/j.boyuan.issn1006-9356.20190107 -