-
摘要: 分析了間隙原子C、N、O、B對高熵合金組織和性能的影響;總結了四種間隙原子含量及其產生的固溶強化、晶粒細化、第二相強化作用對高熵合金組織及性能等方面影響,大量的研究表明,在高熵合金體系中摻雜間隙原子不僅可以調控相結構組成(促進/抑制相變,析出第二相顆粒),還可以改變其形變機制(TWIP、TRIP效應)以實現材料的強韌化。其有效利用既可以拓寬高熵合金的設計思路,也可以有效降低航空材料的制備成本。最后提出了含間隙原子的高強高韌高熵合金組織結構設計研究的新方向:(1)了解不同類型高熵合金的摻雜機理,建立更適合高熵合金體系的固溶強化模型;(2)找出合適的間隙原子及其摻雜量來調節高熵合金微觀結構和力學性能。研究設計摻雜不同間隙原子的高熵合金有望揭示不同間隙原子對其相結構、形變機制和力學性能的影響,具有重要的科學及工程實踐意義。Abstract: High-entropy alloy has become a research hotspot because of its unique microstructure and mechanical properties. The appearance of high-entropy alloy breaks the design concept of traditional alloy with one or two elements as the main element and other elements as the auxiliary element, providing a broader space for the development of new materials. Conventional alloys are generally optimized by four different strengthening methods, as are high-entropy alloys consisting of five or more elements. Appropriately doped interstitial atoms with small atomic sizes (such as C, B, O, and N) can dissolve into crystal interstice, combine with alloying elements to form a fine microstructure and dispersion-strengthened phase, and improve the properties of high-entropy alloy by reducing the layer fault energy and changing the dislocation motion mode. Therefore, exploring the effect of interstitial atom doping on the properties of high-entropy alloys is conducive to promoting the application of high-entropy alloys in different material fields. The effects of the interstitial atoms C, N, O, and B on the microstructures and properties of high-entropy alloys are analyzed. The contents of four kinds of interstitial atoms and their effects on the microstructures and properties of high-entropy alloys are summarized. Numerous studies have shown that doping interstitial atoms can not only regulate the structural composition of the phase (i.e., promote/inhibit the phase transformation and precipitate the second phase particles) in high-entropy alloy systems. The deformation mechanism, i.e., TWIP (Twinning induced plasticity) and TRIP(Transformation induced plasticity) effects, can also be changed to strengthen and toughen the material. Its effective utilization can not only broaden the design idea of high-entropy alloy but also effectively reduce the preparation cost of aviation materials. Finally, a new direction in microstructure design of high-strength, high-toughness, and high-entropy alloys containing interstitial atoms is proposed to (1) understand the doping mechanism of different types of high-entropy alloys and establish a solution-strengthening model more suitable for high-entropy alloy systems and (2) determine the appropriate interstitial atoms and doping amount to adjust the microstructures and mechanical properties of high-entropy alloys. The study and design of high-entropy alloys doped with different interstitial atoms are expected to reveal the effects of different interstitial atoms on the phase structure, deformation mechanism, and mechanical properties, which have important scientific and engineering practical significance.
-
圖 5 TiZrHfNb、(TiZrHfNb)98O2和(TiZrHfNb)98N2高熵合金的力學性能. (a)拉伸應力–應變曲線;(b)高熵合金強度和伸長率與典型高性能合金對比圖[42]
Figure 5. Mechanical properties of TiZrHfNb, (TiZrHfNb) 98O2 and (TiZrHfNb) 98N2 high entropy alloys: (a) tensile stress–strain curves; (b) strength and elongation of high entropy alloy compared with typical high performance alloy[42]
圖 7 不同O含量的(a) SST和(b) STA狀態下TiZrHfNbO HEAs的X射線衍射圖及背散射SEM圖像. (c) O-0-SST; (d) O-1.0-SST; (e) O-2.0-SST; (f) O-0-STA; (g) O-1.0-STA; (h) O-2.0-STA[44]
Figure 7. X-ray diffraction and backscattering SEM images of TiZrHfNbO HEAs with different O contents underwent (a) SST and (b) STA: (c) O-0-SST; (d) O-1.0-SST; (e) O-2.0-SST; (f) O-0-STA; (g) O-1.0-the STA; (h) O-2.0-STA[44]
表 1 NbTaW0.5TiCx合金的室溫力學性能參數[30]
Table 1. Room-temperature mechanical properties of NbTaW0.5TiCx alloys[30]
Alloys Yield strength/MPa Plasticity/% Hardness (HV) ACT0 1060.1 >50 365.9 ACT10 1139.4 36.9 424 ACT20 1236.8 27.6 441.8 ACT30 1337.8 27.3 462.8 ACT40 1351.1 20.5 482.3 ANT0 874.7 >50 353.9 ANT10 1115.3 >50 383.3 ANT20 1177.1 25.3 423.6 ANT30 1257.6 22.6 450.6 ANT40 1245.7 18.3 484.1 表 2 B摻雜高熵合金的制備工藝及結構特征
Table 2. Preparation process and structural characteristics of B-doped high-entropy alloy
Elemental composition Preparation technology Content of B Phase structure Reference CoCrFeNiTi0.6Bx Mechanical alloying
SPSx=0 FCC [45] x=0.025 FCC+MB x=0.05–0.1 FCC+MB x=0.125 FCC+MB+BCC (NbMoTiVSi0.2)100?xBx Vacuum arc melting BCC+M5Si3 [46] Al0.5CoCrCuFeNiBx Vacuum arc melting x=0 FCC [47] x=0–1 FCC+MB CoCrCu0.5FeNiBx Vacuum arc melting x=0 FCC1+FCC2 [48] x=0–0.5 FCC1+FCC3+CrFeB (V0.2Cr0.2Nb0.2Mo0.2Ta0.2)3B4 In situ reactive SPS M3B4+M5B6 [49] (V0.2Cr0.2Nb0.2Ta0.2W0.2)3B4 Al0.1CrNbVMoBx Mechanical alloying
SPSx=0 BCC+Al2O3 [50] x=0.015 BCC+Al2O3 AlFeCoNiBx Vacuum arc melting x=0
x=0.15
x=0.20B2
B2+FCC1+FCC2
B2+FCC1+FCC2[51] AlMo0.5NbTa0.5TiZrBx Vacuum arc melting x=0
x=0.02
x=0.06BCC
BCC
BCC[52] Fe50?xMn30Co10Cr10Bx Vacuum arc melting x=0 FCC [56] x=0.05 FCC+M2B(0.0015) x=0.5 FCC+M2B(0.015) x=0.1 FCC+M2B(0.03) FeCrCoNiMnBx Vacuum arc melting x=0 FCC [57] x=0.01 FCC x=0.05 FCC+(Cr,Fe)2B x=0.10 FCC+(Cr,Fe)2B x=0.15 FCC+(Cr,Fe)2B x=0.20 FCC+(Cr,Fe,Co)2B 259luxu-164 -
參考文獻
[1] Wei Y G, Guo G, Li J, et al. Application of refractory high entropy alloys on aero-engines. J Aeronaut Mater, 2019, 39(5): 82 doi: 10.11868/j.issn.1005-5053.2019.000023魏耀光, 郭剛, 李靜, 等. 難熔高熵合金在航空發動機上的應用. 航空材料學報, 2019, 39(5):82 doi: 10.11868/j.issn.1005-5053.2019.000023 [2] Zong L, Xu L J, Luo C Y, et al. Refractory high-entropy alloys: A review of preparation methods and properties. Chin J Eng, 2021, 43(11): 1459宗樂, 徐流杰, 羅春陽, 等. 難熔高熵合金: 制備方法與性能綜述. 工程科學學報, 2021, 43(11):1459 [3] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567 [4] Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall Mater Trans A, 2004, 35(8): 2533 doi: 10.1007/s11661-006-0234-4 [5] Lilensten L, Couzinié J P, Bourgon J, et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater Res Lett, 2017, 5(2): 110 doi: 10.1080/21663831.2016.1221861 [6] He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. Int J Plast, 2021, 139: 102965 doi: 10.1016/j.ijplas.2021.102965 [7] Gan G Y, Ma L, Luo D M, et al. Influence of Al substitution for Sc on thermodynamic properties of HCP high entropy alloy Hf0.25Ti0.25Zr0.25Sc0.25?xAlx from first-principles investigation. Phys B Condens Matter, 2020, 593: 412272 doi: 10.1016/j.physb.2020.412272 [8] Kim I H, Oh H S, Lee K S, et al. Optimization of conflicting properties via engineering compositional complexity in refractory high entropy alloys. Scr Mater, 2021, 199: 113839 doi: 10.1016/j.scriptamat.2021.113839 [9] Shahmir H, Asghari-Rad P, Mehranpour M S, et al. Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high-entropy alloy by severe plastic deformation. Mater Sci Eng A, 2021, 807: 140875 doi: 10.1016/j.msea.2021.140875 [10] Chang X X. Study on Composition, Structure and Mechanical Properties of FCC High Entropy Alloy [Dissertation]. Dalian: Dalian University of Technology, 2018常曉雪. FCC結構高熵合金的成分、組織及力學性能研究[學位論文]. 大連: 大連理工大學, 2018 [11] Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J Alloys Compd, 2010, 497(1-2): 52 doi: 10.1016/j.jallcom.2010.03.074 [12] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 doi: 10.1016/j.pmatsci.2013.10.001 [13] Ren B, Liu Z X, Li D M, et al. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloys Compd, 2010, 493(1-2): 148 doi: 10.1016/j.jallcom.2009.12.183 [14] Sun R W, Zhang W Q, Fu H M. Effect of solid aluminization on microstructure of AlCoCrFeNi high-entropy alloy. Heat Treat Met, 2015, 40(9): 160孫日偉, 張偉強, 付華萌. 固態滲鋁對 AlCoCrFeNi 高熵合金組織的影響. 金屬熱處理, 2015, 40(9):160 [15] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater, 2013, 61(13): 4887 doi: 10.1016/j.actamat.2013.04.058 [16] Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59(16): 6308 doi: 10.1016/j.actamat.2011.06.041 [17] Huang J P, Zhang Q, Li Z W, et al. Study on the microstructure and properties of FeMoCoNiCrTix high-entropy alloy cladding layer on T10 steel. Nonferrous Met Sci Eng, 2020, 11(3): 39黃晉培, 章奇, 李忠文, 等. T10鋼表面FeMoCoNiCrTix 高熵合金熔覆層組織及性能. 有色金屬科學與工程, 2020, 11(3):39 [18] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004 [19] Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun, 2016, 7: 13564 doi: 10.1038/ncomms13564 [20] Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci, 2010, 52(10): 3481 doi: 10.1016/j.corsci.2010.06.025 [21] Yang F S, Wang J, Zhang Y, et al. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. Int J Hydrog Energy, 2022, 47(21): 11236 doi: 10.1016/j.ijhydene.2022.01.141 [22] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science. Shanghai: Shanghai Jiaotong University Press, 2010胡賡祥, 蔡珣, 戎詠華. 材料科學基礎. 上海: 上海交通大學出版社, 2010 [23] Saenarjhan N, Kang J H, Kim S J. Effects of carbon and nitrogen on austenite stability and tensile deformation behavior of 15Cr–15Mn–4Ni based austenitic stainless steels. Mater Sci Eng A, 2019, 742: 608 doi: 10.1016/j.msea.2018.11.048 [24] Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Prog Mater Sci, 1981, 26(2-4): 123 doi: 10.1016/0079-6425(81)90001-3 [25] Hong D, Wang H B, Hou L G, et al. Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties. Nonferrous Met Sci Eng, 2020, 11(6): 71 doi: 10.13264/j.cnki.ysjskx.2020.06.010洪達, 王和斌, 侯隴剛, 等. 間隙原子對高熵合金組織及性能影響的研究現狀. 有色金屬科學與工程, 2020, 11(6):71 doi: 10.13264/j.cnki.ysjskx.2020.06.010 [26] Gutiérrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater, 2012, 60(16): 5791 doi: 10.1016/j.actamat.2012.07.018 [27] Gutiérrez-Urrutia I, Raabe D. Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel. Scr Mater, 2013, 69(1): 53 doi: 10.1016/j.scriptamat.2013.03.010 [28] Ma Y M. Effect of Intersitial Carbide on Microstructure and Properties of CoCrFeNiV0.5C High Entropy Alloy [Dissertation]. Qinhuangdao: Yanshan University, 2020馬一墨. 間隙碳化物對CoCrFeNiV0.5C系高熵合金組織與性能的影響[學位論文]. 秦皇島: 燕山大學, 2020 [29] Chen Y. Effect of Carbide Ceramic Particles on Microstructure and Properties of Fe50Mn30Co10Cr10 High Entropy Alloy Matrix Composites [Dissertation] Chongqing: Chongqing University of Technology, 2021陳揚. 碳化物陶瓷顆粒對Fe50Mn30Co10Cr10高熵合金基復合材料的微觀組織及性能影響[學位論文]. 重慶: 重慶理工大學, 2021 [30] Wu S Y. Microstructure and Properties of NbTaW0.5M Refractory High Entropy Alloys by Carbon Element [Dissertation]. Dalian: Dalian University of Technology, 2021武士崳. 碳元素對 NbTaW0.5M系難熔高熵合金組織性能影響的研究[學位論文]. 大連: 大連理工大學, 2021 [31] Cheng H, Chen W, Liu X Q, et al. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater Sci Eng A, 2018, 719: 192 doi: 10.1016/j.msea.2018.02.040 [32] Bai L, Wang Y Z, Lv Y K, et al. Effect of carbon on microstructures and mechanical properties of Co-free Fe40Mn30Ni10Cr10Al10 high-entropy alloy. Mater Rev, 2020, 34(17): 17072 doi: 10.11896/cldb.20050196白莉, 王宇哲, 呂煜坤, 等. 碳對無Co高熵合金Fe40Mn30Ni10Cr10Al10組織以及力學性能的影響. 材料導報, 2020, 34(17):17072 doi: 10.11896/cldb.20050196 [33] Chen L B, Wei R, Tang K, et al. Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility. Mater Sci Eng A, 2018, 716: 150 doi: 10.1016/j.msea.2018.01.045 [34] Zhang L, Song R K, Qu G X, et al. Effect of nitrogen on microstructure and mechanical properties of CrMnFeVTi6 high entropy alloy. Trans Nonferrous Met Soc China, 2021, 31(8): 2415 doi: 10.1016/S1003-6326(21)65663-7 [35] Zhang C L, Lu Y P. Effect of nitrogen element on microstructure and mechanical properties of Ti2ZrHfV0.5Mo0. 2 high entropy alloy. Mater Rev, 2019, 33(Suppl 1): 329張長亮, 盧一平. 氮元素對Ti2ZrHfV0.5Mo0. 2高熵合金組織及力學性能的影響. 材料導報, 2019, 33(增刊 1):329 [36] Xie Y C, Cheng H, Tang Q H, et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics, 2018, 93: 228 doi: 10.1016/j.intermet.2017.09.013 [37] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Newyork: John Wiley & Sons, 2003 [38] Yan M, Xu W, Dargusch M S, et al. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall, 2014, 57(4): 251 doi: 10.1179/1743290114Y.0000000108 [39] Moffatt W G. The Handbook of Binary Phase Diagrams. New York: Genium Pub, Schenectady, 1984 [40] Barkia B, Doquet V, Couzinie J P, et al. In situ monitoring of the deformation mechanisms in titanium with different oxygen contents. Mater Sci Eng A, 2015, 636: 91 doi: 10.1016/j.msea.2015.03.044 [41] Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science, 2015, 347(6222): 635 doi: 10.1126/science.1260485 [42] Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 doi: 10.1038/s41586-018-0685-y [43] Ritchie R O. The conflicts between strength and toughness. Nat Mater, 2011, 10(11): 817 doi: 10.1038/nmat3115 [44] Wu Y D, Wang Q J, Lin D Y, et al. Phase stability and deformation behavior of TiZrHfNbO high-entropy alloys. Front Mater, 2020, 7: 589052 doi: 10.3389/fmats.2020.589052 [45] Jiang Y, Li X M, Zhou G T, et al. Effects of B content on microstructure and properties of CrFeCoNiTi0.6 high-entropy alloy. Mater Sci Eng Powder Metall, 2020, 25(5): 403 doi: 10.3969/j.issn.1673-0224.2020.05.007姜越, 李秀明, 周廣泰, 等. B含量對CrFeCoNiTi0.6高熵合金顯微組織和性能的影響. 粉末冶金材料科學與工程, 2020, 25(5):403 doi: 10.3969/j.issn.1673-0224.2020.05.007 [46] Xu Q, Wang Q, Li J, et al. Effects of boron on the microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys. Special Casting Nonferrous Alloys, 2022, 42(3): 292徐琴, 王琪, 李娟, 等. B對NbMoTiVSi0.2難熔高熵合金組織與力學性能的影響. 特種鑄造及有色合金, 2022, 42(3):292 [47] Liu X T, Lei W B, Ma L J, et al. Effect of boron on the microstructure, phase assemblage and wear properties of Al0.5CoCrCuFeNi high-entropy alloy. Rare Met Mater Eng, 2016, 45(9): 2201 doi: 10.1016/S1875-5372(17)30003-6 [48] Peng Z, Liu N, Wu P H, et al. Effect of boron addition on microstructure and properties of CoCrCu0.5FeNi high entropy alloy. Heat Treat Met, 2017, 42(6): 153彭振, 劉寧, 吳朋慧, 等. 硼元素對 CoCrCu0.5FeNi 高熵合金組織和性能的影響. 金屬熱處理, 2017, 42(6):153 [49] Qin M D, Yan Q Z, Liu Y, et al. A new class of high-entropy M3B4 borides. J Adv Ceram, 2021, 10(1): 166 doi: 10.1007/s40145-020-0438-x [50] Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy. Int J Refract Met Hard Mater, 2021, 100: 105636 doi: 10.1016/j.ijrmhm.2021.105636 [51] Hou L L, Guo Q, Gao Y Y, et al. Effect of boron on microstructure and oxidation properties of AlFeCoNi high entropy alloy. Rare Met Mater Eng, 2021, 50(9): 3342侯麗麗, 郭強, 高雨雨, 等. 硼對AlFeCoNi高熵合金組織和高溫氧化性能的影響. 稀有金屬材料與工程, 2021, 50(9):3342 [52] Yao Y H, Liang X Y, Jin Y H, et al. Effect of B addition on microstructure and high temperature oxidation resistance of AlMo0.5NbTa0.5TiZr refractory high-entropy alloys. Surf Technol, 2020, 49(2): 235要玉宏, 梁霄羽, 金耀華, 等. 硼對AlMo0.5NbTa0.5TiZr難熔高熵合金組織和高溫氧化性能的影響. 表面技術, 2020, 49(2):235 [53] Zhao X, Qi M, Wang F T, et al. Effect of small amount of boron on the property of CuZnAl shape memory alloy. Chin J Mater Res, 1990, 4(6): 514趙旭, 齊民, 王鳳庭, 等. 微量硼對CuZnAl形狀記憶合金性能的影響. 材料科學進展, 1990, 4(6):514 [54] Seol J B, BaeJ W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater, 2018, 151: 366 doi: 10.1016/j.actamat.2018.04.004 [55] Yang Y R, Zhang Y C, Li J W, et al. Research status of high entropy alloying. Metall Eng, 2021(1): 9楊顏如, 張祎梣, 李嘉雯, 等. 高熵合金化研究現狀. 冶金工程, 2021(1):9 [56] Liu Y. Effect of Interstitial Atoms on Microstructure and Mechanical Properties of Fe50Mn30Co10Cr10 High Entropy Alloy [Dissertation]. Chongqing: Chongqing University of Technology, 2021劉怡. 間隙原子對Fe50Mn30Co10Cr10高熵合金微觀組織及力學性能的影響[學位論文]. 重慶: 重慶理工大學, 2021 [57] Hou L L, Liang X Y, Yao Y H, et al. Effect of B content on microstructure and mechanical properties of FeCrCoNiMn high entropy alloy. Rare Met Mater Eng, 2018, 47(10): 3203侯麗麗, 梁霄羽, 要玉宏, 等. B 含量對FeCrCoNiMn高熵合金組織及力學性能的影響. 稀有金屬材料與工程, 2018, 47(10):3203 -