<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

間隙原子摻雜高熵合金的研究進展

朱晨輝 徐流杰 劉美君 郭明宜

朱晨輝, 徐流杰, 劉美君, 郭明宜. 間隙原子摻雜高熵合金的研究進展[J]. 工程科學學報, 2023, 45(9): 1459-1469. doi: 10.13374/j.issn2095-9389.2022.10.24.006
引用本文: 朱晨輝, 徐流杰, 劉美君, 郭明宜. 間隙原子摻雜高熵合金的研究進展[J]. 工程科學學報, 2023, 45(9): 1459-1469. doi: 10.13374/j.issn2095-9389.2022.10.24.006
ZHU Chenhui, XU Liujie, LIU Meijun, GUO Mingyi. Research progress on interstitial-atom-doped high-entropy alloys[J]. Chinese Journal of Engineering, 2023, 45(9): 1459-1469. doi: 10.13374/j.issn2095-9389.2022.10.24.006
Citation: ZHU Chenhui, XU Liujie, LIU Meijun, GUO Mingyi. Research progress on interstitial-atom-doped high-entropy alloys[J]. Chinese Journal of Engineering, 2023, 45(9): 1459-1469. doi: 10.13374/j.issn2095-9389.2022.10.24.006

間隙原子摻雜高熵合金的研究進展

doi: 10.13374/j.issn2095-9389.2022.10.24.006
基金項目: 國家重點研發計劃資助項目(2020YFB2008400)
詳細信息
    通訊作者:

    E-mail: wmxlj@126.com

  • 中圖分類號: TG132.3

Research progress on interstitial-atom-doped high-entropy alloys

More Information
  • 摘要: 分析了間隙原子C、N、O、B對高熵合金組織和性能的影響;總結了四種間隙原子含量及其產生的固溶強化、晶粒細化、第二相強化作用對高熵合金組織及性能等方面影響,大量的研究表明,在高熵合金體系中摻雜間隙原子不僅可以調控相結構組成(促進/抑制相變,析出第二相顆粒),還可以改變其形變機制(TWIP、TRIP效應)以實現材料的強韌化。其有效利用既可以拓寬高熵合金的設計思路,也可以有效降低航空材料的制備成本。最后提出了含間隙原子的高強高韌高熵合金組織結構設計研究的新方向:(1)了解不同類型高熵合金的摻雜機理,建立更適合高熵合金體系的固溶強化模型;(2)找出合適的間隙原子及其摻雜量來調節高熵合金微觀結構和力學性能。研究設計摻雜不同間隙原子的高熵合金有望揭示不同間隙原子對其相結構、形變機制和力學性能的影響,具有重要的科學及工程實踐意義。

     

  • 圖  1  鑄態NbTaW0.5TiCx合金的背散射電子圖片[30]. (a) ACT0;(b) ACT10;(c) ACT20;(d) ACT30

    Figure  1.  Backscattered electron images of as-cast NbTaW0.5TiCx alloy[30]: (a) ACT0; (b) ACT10; (c) ACT20; (d) ACT30

    圖  2  退火態NbTaW0.5TiCx合金的背散射電子圖片[30]. (a) ANT0;(b) ANT10;(c) ANT20;(d) ANT30

    Figure  2.  Backscattered electron images of annealed NbTaW0.5TiCx alloy[30]: (a) ANT0; (b) ANT10; (c) ANT20; (d) ANT30

    圖  3  NbTaW0.5TiCx合金的室溫力學性能圖[30]. (a)鑄態壓縮應力–應變曲線;(b)退火態壓縮應力–應變曲線

    Figure  3.  Mechanical properties of as-cast NbTaW0.5TiCx alloys at room temperature[30]: (a) ACT compression stress–strain curve; (b) ANT compression stress–strain curve

    圖  4  (Ti2ZrHfV0.5Mo0.2)1–xNx合金的(a)平均維氏硬度、(b)壓縮應力–應變曲線和(c)壓縮屈服強度隨N含量的變化[35]

    Figure  4.  (a) Average Vickers hardness, (b) compressive stress–strain curves, and (c) compressive yield strength of the (Ti2ZrHfV0.5Mo0.2)1–xNx alloy[35]

    圖  5  TiZrHfNb、(TiZrHfNb)98O2和(TiZrHfNb)98N2高熵合金的力學性能. (a)拉伸應力–應變曲線;(b)高熵合金強度和伸長率與典型高性能合金對比圖[42]

    Figure  5.  Mechanical properties of TiZrHfNb, (TiZrHfNb) 98O2 and (TiZrHfNb) 98N2 high entropy alloys: (a) tensile stress–strain curves; (b) strength and elongation of high entropy alloy compared with typical high performance alloy[42]

    圖  6  TiZrHfNbO耐火材料HEA經過(a)SST和(b)STA熱處理后的拉伸真實應力應變曲線[44]

    Figure  6.  Tensile true stress–strain curves of TiZrHfNbO refractory HEAs underwent (a) SST and (b) STA heat treatments[44]

    圖  7  不同O含量的(a) SST和(b) STA狀態下TiZrHfNbO HEAs的X射線衍射圖及背散射SEM圖像. (c) O-0-SST; (d) O-1.0-SST; (e) O-2.0-SST; (f) O-0-STA; (g) O-1.0-STA; (h) O-2.0-STA[44]

    Figure  7.  X-ray diffraction and backscattering SEM images of TiZrHfNbO HEAs with different O contents underwent (a) SST and (b) STA: (c) O-0-SST; (d) O-1.0-SST; (e) O-2.0-SST; (f) O-0-STA; (g) O-1.0-the STA; (h) O-2.0-STA[44]

    圖  8  燒結的B0和B0.015(a)的XRD圖譜,B0(b)和B0.015(d)的SEM微結構,以及B0(c)和B0.015(e)的EBSD反極圖映射圖像 [50]

    Figure  8.  XRD patterns of the sintered B0 and B0.015 (a), SEM microstructures of B0 (b) and B0.015 (d), and EBSD inverse pole figure mapping images of B0 (c) and B0.015 (e)[50]

    圖  9  強度對B0和B0.015 RHEA屈服強度的貢獻

    Figure  9.  Strength contributions to the yield strength of the B0 and B0.015 RHEAs

    表  1  NbTaW0.5TiCx合金的室溫力學性能參數[30]

    Table  1.   Room-temperature mechanical properties of NbTaW0.5TiCx alloys[30]

    AlloysYield strength/MPaPlasticity/%Hardness (HV)
    ACT01060.1>50365.9
    ACT101139.436.9424
    ACT201236.827.6441.8
    ACT301337.827.3462.8
    ACT401351.120.5482.3
    ANT0874.7>50353.9
    ANT101115.3>50383.3
    ANT201177.125.3423.6
    ANT301257.622.6450.6
    ANT401245.718.3484.1
    下載: 導出CSV

    表  2  B摻雜高熵合金的制備工藝及結構特征

    Table  2.   Preparation process and structural characteristics of B-doped high-entropy alloy

    Elemental compositionPreparation technologyContent of BPhase structureReference
    CoCrFeNiTi0.6BxMechanical alloying
    SPS
    x=0FCC[45]
    x=0.025FCC+MB
    x=0.05–0.1FCC+MB
    x=0.125FCC+MB+BCC
    (NbMoTiVSi0.2)100?xBxVacuum arc meltingBCC+M5Si3[46]
    Al0.5CoCrCuFeNiBxVacuum arc meltingx=0FCC[47]
    x=0–1FCC+MB
    CoCrCu0.5FeNiBxVacuum arc meltingx=0FCC1+FCC2[48]
    x=0–0.5FCC1+FCC3+CrFeB
    (V0.2Cr0.2Nb0.2Mo0.2Ta0.2)3B4In situ reactive SPSM3B4+M5B6[49]
    (V0.2Cr0.2Nb0.2Ta0.2W0.2)3B4
    Al0.1CrNbVMoBxMechanical alloying
    SPS
    x=0BCC+Al2O3[50]
    x=0.015BCC+Al2O3
    AlFeCoNiBxVacuum arc meltingx=0
    x=0.15
    x=0.20
    B2
    B2+FCC1+FCC2
    B2+FCC1+FCC2
    [51]
    AlMo0.5NbTa0.5TiZrBxVacuum arc meltingx=0
    x=0.02
    x=0.06
    BCC
    BCC
    BCC
    [52]
    Fe50?xMn30Co10Cr10BxVacuum arc meltingx=0FCC[56]
    x=0.05FCC+M2B(0.0015)
    x=0.5FCC+M2B(0.015)
    x=0.1FCC+M2B(0.03)
    FeCrCoNiMnBxVacuum arc meltingx=0FCC[57]
    x=0.01FCC
    x=0.05FCC+(Cr,Fe)2B
    x=0.10FCC+(Cr,Fe)2B
    x=0.15FCC+(Cr,Fe)2B
    x=0.20FCC+(Cr,Fe,Co)2B
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wei Y G, Guo G, Li J, et al. Application of refractory high entropy alloys on aero-engines. J Aeronaut Mater, 2019, 39(5): 82 doi: 10.11868/j.issn.1005-5053.2019.000023

    魏耀光, 郭剛, 李靜, 等. 難熔高熵合金在航空發動機上的應用. 航空材料學報, 2019, 39(5):82 doi: 10.11868/j.issn.1005-5053.2019.000023
    [2] Zong L, Xu L J, Luo C Y, et al. Refractory high-entropy alloys: A review of preparation methods and properties. Chin J Eng, 2021, 43(11): 1459

    宗樂, 徐流杰, 羅春陽, 等. 難熔高熵合金: 制備方法與性能綜述. 工程科學學報, 2021, 43(11):1459
    [3] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv Eng Mater, 2004, 6(5): 299 doi: 10.1002/adem.200300567
    [4] Yeh J W, Lin S J, Chin T S, et al. Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall Mater Trans A, 2004, 35(8): 2533 doi: 10.1007/s11661-006-0234-4
    [5] Lilensten L, Couzinié J P, Bourgon J, et al. Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater Res Lett, 2017, 5(2): 110 doi: 10.1080/21663831.2016.1221861
    [6] He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. Int J Plast, 2021, 139: 102965 doi: 10.1016/j.ijplas.2021.102965
    [7] Gan G Y, Ma L, Luo D M, et al. Influence of Al substitution for Sc on thermodynamic properties of HCP high entropy alloy Hf0.25Ti0.25Zr0.25Sc0.25?xAlx from first-principles investigation. Phys B Condens Matter, 2020, 593: 412272 doi: 10.1016/j.physb.2020.412272
    [8] Kim I H, Oh H S, Lee K S, et al. Optimization of conflicting properties via engineering compositional complexity in refractory high entropy alloys. Scr Mater, 2021, 199: 113839 doi: 10.1016/j.scriptamat.2021.113839
    [9] Shahmir H, Asghari-Rad P, Mehranpour M S, et al. Evidence of FCC to HCP and BCC-martensitic transformations in a CoCrFeNiMn high-entropy alloy by severe plastic deformation. Mater Sci Eng A, 2021, 807: 140875 doi: 10.1016/j.msea.2021.140875
    [10] Chang X X. Study on Composition, Structure and Mechanical Properties of FCC High Entropy Alloy [Dissertation]. Dalian: Dalian University of Technology, 2018

    常曉雪. FCC結構高熵合金的成分、組織及力學性能研究[學位論文]. 大連: 大連理工大學, 2018
    [11] Zhu J M, Zhang H F, Fu H M, et al. Microstructures and compressive properties of multicomponent AlCoCrCuFeNiMox alloys. J Alloys Compd, 2010, 497(1-2): 52 doi: 10.1016/j.jallcom.2010.03.074
    [12] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys. Prog Mater Sci, 2014, 61: 1 doi: 10.1016/j.pmatsci.2013.10.001
    [13] Ren B, Liu Z X, Li D M, et al. Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system. J Alloys Compd, 2010, 493(1-2): 148 doi: 10.1016/j.jallcom.2009.12.183
    [14] Sun R W, Zhang W Q, Fu H M. Effect of solid aluminization on microstructure of AlCoCrFeNi high-entropy alloy. Heat Treat Met, 2015, 40(9): 160

    孫日偉, 張偉強, 付華萌. 固態滲鋁對 AlCoCrFeNi 高熵合金組織的影響. 金屬熱處理, 2015, 40(9):160
    [15] Tsai K Y, Tsai M H, Yeh J W. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater, 2013, 61(13): 4887 doi: 10.1016/j.actamat.2013.04.058
    [16] Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater, 2011, 59(16): 6308 doi: 10.1016/j.actamat.2011.06.041
    [17] Huang J P, Zhang Q, Li Z W, et al. Study on the microstructure and properties of FeMoCoNiCrTix high-entropy alloy cladding layer on T10 steel. Nonferrous Met Sci Eng, 2020, 11(3): 39

    黃晉培, 章奇, 李忠文, 等. T10鋼表面FeMoCoNiCrTix 高熵合金熔覆層組織及性能. 有色金屬科學與工程, 2020, 11(3):39
    [18] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics, 2011, 19(5): 698 doi: 10.1016/j.intermet.2011.01.004
    [19] Lu C Y, Niu L L, Chen N J, et al. Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nat Commun, 2016, 7: 13564 doi: 10.1038/ncomms13564
    [20] Chou Y L, Wang Y C, Yeh J W, et al. Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions. Corros Sci, 2010, 52(10): 3481 doi: 10.1016/j.corsci.2010.06.025
    [21] Yang F S, Wang J, Zhang Y, et al. Recent progress on the development of high entropy alloys (HEAs) for solid hydrogen storage: A review. Int J Hydrog Energy, 2022, 47(21): 11236 doi: 10.1016/j.ijhydene.2022.01.141
    [22] Hu G X, Cai X, Rong Y H. Fundamentals of Materials Science. Shanghai: Shanghai Jiaotong University Press, 2010

    胡賡祥, 蔡珣, 戎詠華. 材料科學基礎. 上海: 上海交通大學出版社, 2010
    [23] Saenarjhan N, Kang J H, Kim S J. Effects of carbon and nitrogen on austenite stability and tensile deformation behavior of 15Cr–15Mn–4Ni based austenitic stainless steels. Mater Sci Eng A, 2019, 742: 608 doi: 10.1016/j.msea.2018.11.048
    [24] Conrad H. Effect of interstitial solutes on the strength and ductility of titanium. Prog Mater Sci, 1981, 26(2-4): 123 doi: 10.1016/0079-6425(81)90001-3
    [25] Hong D, Wang H B, Hou L G, et al. Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties. Nonferrous Met Sci Eng, 2020, 11(6): 71 doi: 10.13264/j.cnki.ysjskx.2020.06.010

    洪達, 王和斌, 侯隴剛, 等. 間隙原子對高熵合金組織及性能影響的研究現狀. 有色金屬科學與工程, 2020, 11(6):71 doi: 10.13264/j.cnki.ysjskx.2020.06.010
    [26] Gutiérrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe–Mn–Al–C steel. Acta Mater, 2012, 60(16): 5791 doi: 10.1016/j.actamat.2012.07.018
    [27] Gutiérrez-Urrutia I, Raabe D. Microbanding mechanism in an Fe–Mn–C high-Mn twinning-induced plasticity steel. Scr Mater, 2013, 69(1): 53 doi: 10.1016/j.scriptamat.2013.03.010
    [28] Ma Y M. Effect of Intersitial Carbide on Microstructure and Properties of CoCrFeNiV0.5C High Entropy Alloy [Dissertation]. Qinhuangdao: Yanshan University, 2020

    馬一墨. 間隙碳化物對CoCrFeNiV0.5C系高熵合金組織與性能的影響[學位論文]. 秦皇島: 燕山大學, 2020
    [29] Chen Y. Effect of Carbide Ceramic Particles on Microstructure and Properties of Fe50Mn30Co10Cr10 High Entropy Alloy Matrix Composites [Dissertation] Chongqing: Chongqing University of Technology, 2021

    陳揚. 碳化物陶瓷顆粒對Fe50Mn30Co10Cr10高熵合金基復合材料的微觀組織及性能影響[學位論文]. 重慶: 重慶理工大學, 2021
    [30] Wu S Y. Microstructure and Properties of NbTaW0.5M Refractory High Entropy Alloys by Carbon Element [Dissertation]. Dalian: Dalian University of Technology, 2021

    武士崳. 碳元素對 NbTaW0.5M系難熔高熵合金組織性能影響的研究[學位論文]. 大連: 大連理工大學, 2021
    [31] Cheng H, Chen W, Liu X Q, et al. Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater Sci Eng A, 2018, 719: 192 doi: 10.1016/j.msea.2018.02.040
    [32] Bai L, Wang Y Z, Lv Y K, et al. Effect of carbon on microstructures and mechanical properties of Co-free Fe40Mn30Ni10Cr10Al10 high-entropy alloy. Mater Rev, 2020, 34(17): 17072 doi: 10.11896/cldb.20050196

    白莉, 王宇哲, 呂煜坤, 等. 碳對無Co高熵合金Fe40Mn30Ni10Cr10Al10組織以及力學性能的影響. 材料導報, 2020, 34(17):17072 doi: 10.11896/cldb.20050196
    [33] Chen L B, Wei R, Tang K, et al. Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility. Mater Sci Eng A, 2018, 716: 150 doi: 10.1016/j.msea.2018.01.045
    [34] Zhang L, Song R K, Qu G X, et al. Effect of nitrogen on microstructure and mechanical properties of CrMnFeVTi6 high entropy alloy. Trans Nonferrous Met Soc China, 2021, 31(8): 2415 doi: 10.1016/S1003-6326(21)65663-7
    [35] Zhang C L, Lu Y P. Effect of nitrogen element on microstructure and mechanical properties of Ti2ZrHfV0.5Mo0. 2 high entropy alloy. Mater Rev, 2019, 33(Suppl 1): 329

    張長亮, 盧一平. 氮元素對Ti2ZrHfV0.5Mo0. 2高熵合金組織及力學性能的影響. 材料導報, 2019, 33(增刊 1):329
    [36] Xie Y C, Cheng H, Tang Q H, et al. Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics, 2018, 93: 228 doi: 10.1016/j.intermet.2017.09.013
    [37] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Newyork: John Wiley & Sons, 2003
    [38] Yan M, Xu W, Dargusch M S, et al. Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall, 2014, 57(4): 251 doi: 10.1179/1743290114Y.0000000108
    [39] Moffatt W G. The Handbook of Binary Phase Diagrams. New York: Genium Pub, Schenectady, 1984
    [40] Barkia B, Doquet V, Couzinie J P, et al. In situ monitoring of the deformation mechanisms in titanium with different oxygen contents. Mater Sci Eng A, 2015, 636: 91 doi: 10.1016/j.msea.2015.03.044
    [41] Yu Q, Qi L, Tsuru T, et al. Origin of dramatic oxygen solute strengthening effect in titanium. Science, 2015, 347(6222): 635 doi: 10.1126/science.1260485
    [42] Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature, 2018, 563(7732): 546 doi: 10.1038/s41586-018-0685-y
    [43] Ritchie R O. The conflicts between strength and toughness. Nat Mater, 2011, 10(11): 817 doi: 10.1038/nmat3115
    [44] Wu Y D, Wang Q J, Lin D Y, et al. Phase stability and deformation behavior of TiZrHfNbO high-entropy alloys. Front Mater, 2020, 7: 589052 doi: 10.3389/fmats.2020.589052
    [45] Jiang Y, Li X M, Zhou G T, et al. Effects of B content on microstructure and properties of CrFeCoNiTi0.6 high-entropy alloy. Mater Sci Eng Powder Metall, 2020, 25(5): 403 doi: 10.3969/j.issn.1673-0224.2020.05.007

    姜越, 李秀明, 周廣泰, 等. B含量對CrFeCoNiTi0.6高熵合金顯微組織和性能的影響. 粉末冶金材料科學與工程, 2020, 25(5):403 doi: 10.3969/j.issn.1673-0224.2020.05.007
    [46] Xu Q, Wang Q, Li J, et al. Effects of boron on the microstructure and mechanical properties of NbMoTiVSi0.2 refractory high entropy alloys. Special Casting Nonferrous Alloys, 2022, 42(3): 292

    徐琴, 王琪, 李娟, 等. B對NbMoTiVSi0.2難熔高熵合金組織與力學性能的影響. 特種鑄造及有色合金, 2022, 42(3):292
    [47] Liu X T, Lei W B, Ma L J, et al. Effect of boron on the microstructure, phase assemblage and wear properties of Al0.5CoCrCuFeNi high-entropy alloy. Rare Met Mater Eng, 2016, 45(9): 2201 doi: 10.1016/S1875-5372(17)30003-6
    [48] Peng Z, Liu N, Wu P H, et al. Effect of boron addition on microstructure and properties of CoCrCu0.5FeNi high entropy alloy. Heat Treat Met, 2017, 42(6): 153

    彭振, 劉寧, 吳朋慧, 等. 硼元素對 CoCrCu0.5FeNi 高熵合金組織和性能的影響. 金屬熱處理, 2017, 42(6):153
    [49] Qin M D, Yan Q Z, Liu Y, et al. A new class of high-entropy M3B4 borides. J Adv Ceram, 2021, 10(1): 166 doi: 10.1007/s40145-020-0438-x
    [50] Kang B, Kong T, Dan N H, et al. Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy. Int J Refract Met Hard Mater, 2021, 100: 105636 doi: 10.1016/j.ijrmhm.2021.105636
    [51] Hou L L, Guo Q, Gao Y Y, et al. Effect of boron on microstructure and oxidation properties of AlFeCoNi high entropy alloy. Rare Met Mater Eng, 2021, 50(9): 3342

    侯麗麗, 郭強, 高雨雨, 等. 硼對AlFeCoNi高熵合金組織和高溫氧化性能的影響. 稀有金屬材料與工程, 2021, 50(9):3342
    [52] Yao Y H, Liang X Y, Jin Y H, et al. Effect of B addition on microstructure and high temperature oxidation resistance of AlMo0.5NbTa0.5TiZr refractory high-entropy alloys. Surf Technol, 2020, 49(2): 235

    要玉宏, 梁霄羽, 金耀華, 等. 硼對AlMo0.5NbTa0.5TiZr難熔高熵合金組織和高溫氧化性能的影響. 表面技術, 2020, 49(2):235
    [53] Zhao X, Qi M, Wang F T, et al. Effect of small amount of boron on the property of CuZnAl shape memory alloy. Chin J Mater Res, 1990, 4(6): 514

    趙旭, 齊民, 王鳳庭, 等. 微量硼對CuZnAl形狀記憶合金性能的影響. 材料科學進展, 1990, 4(6):514
    [54] Seol J B, BaeJ W, Li Z M, et al. Boron doped ultrastrong and ductile high-entropy alloys. Acta Mater, 2018, 151: 366 doi: 10.1016/j.actamat.2018.04.004
    [55] Yang Y R, Zhang Y C, Li J W, et al. Research status of high entropy alloying. Metall Eng, 2021(1): 9

    楊顏如, 張祎梣, 李嘉雯, 等. 高熵合金化研究現狀. 冶金工程, 2021(1):9
    [56] Liu Y. Effect of Interstitial Atoms on Microstructure and Mechanical Properties of Fe50Mn30Co10Cr10 High Entropy Alloy [Dissertation]. Chongqing: Chongqing University of Technology, 2021

    劉怡. 間隙原子對Fe50Mn30Co10Cr10高熵合金微觀組織及力學性能的影響[學位論文]. 重慶: 重慶理工大學, 2021
    [57] Hou L L, Liang X Y, Yao Y H, et al. Effect of B content on microstructure and mechanical properties of FeCrCoNiMn high entropy alloy. Rare Met Mater Eng, 2018, 47(10): 3203

    侯麗麗, 梁霄羽, 要玉宏, 等. B 含量對FeCrCoNiMn高熵合金組織及力學性能的影響. 稀有金屬材料與工程, 2018, 47(10):3203
  • 加載中
圖(9) / 表(2)
計量
  • 文章訪問數:  294
  • HTML全文瀏覽量:  142
  • PDF下載量:  81
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-10-24
  • 網絡出版日期:  2023-01-12
  • 刊出日期:  2023-09-25

目錄

    /

    返回文章
    返回