<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

變熱導率的冪律流體在水平波面上的傳熱問題研究

劉芳芳 張愛莉 司新輝 曹麗梅

劉芳芳, 張愛莉, 司新輝, 曹麗梅. 變熱導率的冪律流體在水平波面上的傳熱問題研究[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.09.30.003
引用本文: 劉芳芳, 張愛莉, 司新輝, 曹麗梅. 變熱導率的冪律流體在水平波面上的傳熱問題研究[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.09.30.003
LIU Fangfang, ZHANG Aili, SI Xinhui, CAO Limei. Heat transfer of power-law fluids with variable thermal conductivities on a horizontal rough surface[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.30.003
Citation: LIU Fangfang, ZHANG Aili, SI Xinhui, CAO Limei. Heat transfer of power-law fluids with variable thermal conductivities on a horizontal rough surface[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.30.003

變熱導率的冪律流體在水平波面上的傳熱問題研究

doi: 10.13374/j.issn2095-9389.2022.09.30.003
基金項目: 國家自然科學基金面上資助項目(12072024)
詳細信息
    通訊作者:

    E-mail: caolimei@ustb.edu.cn

  • 中圖分類號: O29

Heat transfer of power-law fluids with variable thermal conductivities on a horizontal rough surface

More Information
  • 摘要: 根據泰勒展開式和邊界層理論, 推導了變熱導率的Oswad-de Waele冪律流體沿水平波面上的邊界層方程.假設熱傳導系數是依賴于溫度梯度的冪律函數, 構建了變熱導率的能量方程模型. 引入一系列變換,把變量量綱為一化和坐標變換,將原始波面轉換為偏微分方程組, 并用Keller-box方法進行數值求解. 討論了某些參數如波幅與波長的比值、冪律指數以及廣義普朗特數對壁面摩擦和流體傳熱的影響. 計算結果顯示:表面速度和壓力梯度沿波面呈周期性變化,而且它們的變化周期與波面的變化周期完全一致. 而對于壁面的摩擦系數和局部Nusselt數, 在靠近零點的地方會有劇烈震蕩, 沿軸向會呈現波形分布狀態, 隨著波長比率的增大而減小, 且會隨著振幅的增大, 壁面摩擦系數也會震蕩加劇. 隨著冪律指數的增加, 局部Nusselt數呈現遞減的分布狀態. 對于問題的特殊情況,當壁面是光滑平板時,盡管壁面的摩擦系數和局部Nusselt數沿軸向在初始位置會有波動,但會在很短的距離達到穩定的狀態. 從不同參數對周期的影響來看, 周期性波動的壁面摩擦系數和局部Nusselt數與波面曲線的峰頂和波谷并不保持一致.

     

  • 圖  1  物理模型

    Figure  1.  Coordinate system and the physical model

    圖  2  速度$ {U_{\text{w}}}(x) $和壓力梯度$ {\text{d}}p/{\text{d}}x $關于$ x $的變化圖像

    Figure  2.  The variation of inviscid surface velocity $ {U_{\text{w}}}(x) $ and pressure gradient $ {\text{d}}p/{\text{d}}x $against $ x $

    圖  3  $ n = 0.8 $$ {N_{{\text{zh}}}} = 1 $時壁面摩擦系數$ ( {{{C_{\text{f}}}} \mathord{\left/ {\vphantom {{{C_{\text{f}}}} 2}} \right. } 2} ) {{Re} _x}^{\frac{1}{{n + 1}}} $的軸向分布

    Figure  3.  Axial distribution of $ ( {{{C_{\text{f}}}} \mathord{\left/ {\vphantom {{{C_{\text{f}}}} 2}} \right. } 2} ) {{Re} _x}^{\frac{1}{{n + 1}}} $ for $ n = 0.8 $ and $ {N_{{\text{zh}}}} = 1 $

    圖  6  $ \alpha {\text{ = 0}}{\text{.01}} $$ {N_{{\text{zh}}}} = 1 $時壁面摩擦系數$ ( {{{C_{\text{f}}}} \mathord{\left/ {\vphantom {{{C_{\text{f}}}} 2}} \right. } 2} ) {{Re} _x}^{\frac{1}{{n + 1}}} $的軸向分布

    Figure  6.  Axial distribution of $ ( {{{C_{\text{f}}}} \mathord{\left/ {\vphantom {{{C_{\text{f}}}} 2}} \right. } 2} ) {{Re} _x}^{\frac{1}{{n + 1}}} $ for $ \alpha {\text{ = 0}}{\text{.01}} $ and $ {N_{{\text{zh}}}} = 1 $

    圖  4  $ n = 1.0 $$ {N_{{\text{zh}}}} = 1 $時壁面摩擦系數$ ( {{{C_{\text{f}}}} \mathord{\left/ {\vphantom {{{C_{\text{f}}}} 2}} \right. } 2} ) {{Re} _x}^{\frac{1}{{n + 1}}} $的軸向分布

    Figure  4.  Axial distribution of $ ( {{{C_{\text{f}}}} \mathord{\left/ {\vphantom {{{C_{\text{f}}}} 2}} \right. } 2} ) {{Re} _x}^{\frac{1}{{n + 1}}} $ for $ n = 1.0 $ and $ {N_{{\text{zh}}}} = 1 $

    圖  5  $ n = 1.2 $$ {N_{{\text{zh}}}} = 1 $時壁面摩擦系數$ ( {{{C_{\text{f}}}} \mathord{\left/ {\vphantom {{{C_{\text{f}}}} 2}} \right. } 2} ) {{Re} _x}^{\frac{1}{{n + 1}}} $的軸向分布

    Figure  5.  Axial distribution of $ {{({C_{\text{f}}}} \mathord{\left/ {\vphantom {{({C_{\text{f}}}} 2}} \right. } 2}){{Re} _x}^{\frac{1}{{n + 1}}} $ for $ n = 1.2 $ and $ {N_{{\rm{zh}}}} = 1 $

    圖  7  $ n = 0.8 $$ {N_{{\text{zh}}}} = 1 $時局部Nusselt數的軸向分布

    Figure  7.  Axial distributions of the local Nusselt number for $ n = 0.8 $ and $ {N_{{\text{zh}}}} = 1 $

    圖  10  $ \alpha {\text{ = 0}}{\text{.01}} $$ {N_{{\text{zh}}}} = 1 $ 時局部Nusselt數的軸向分布

    Figure  10.  Axial distributions of the local Nusselt number for $ \alpha {\text{ = 0}}{\text{.01}} $ and $ {N_{{\text{zh}}}} = 1 $

    圖  8  $ n = 1.0 $$ {N_{{\text{zh}}}} = 1 $時局部Nusselt數的軸向分布

    Figure  8.  Axial distributions of the local Nusselt number for $ n = 1.0 $ and $ {N_{{\text{zh}}}} = 1 $

    圖  9  $ n = 1.2 $$ {N_{{\text{zh}}}} = 1 $時局部Nusselt數的軸向分布

    Figure  9.  Axial distributions of the local Nusselt number for $ n = 1.2 $ and $ {N_{{\text{zh}}}} = 1 $

    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Schowalter W R. The application of boundary-layer theory to power-law pseudoplastic fluids: Similar solutions. Aiche J, 1960, 6(1): 24 doi: 10.1002/aic.690060105
    [2] Huang M J, Chen C K. Numerical analysis for forced convection over a flat plate in power law fluids. Int Commun Heat Mass Transf, 1984, 11(4): 361 doi: 10.1016/0735-1933(84)90064-2
    [3] Wang T Y. Mixed convection from a vertical plate to non-Newtonian fluids with uniform surface heat flux. Int Commun Heat Mass Transf, 1995, 22(3): 369 doi: 10.1016/0735-1933(95)00017-S
    [4] Wang T Y. Mixed convection heat transfer from a vertical plate to non-Newtonian fluids. Int J Heat Fluid Flow, 1995, 16(1): 56 doi: 10.1016/0142-727X(94)00008-Z
    [5] Hady F M. Mixed convection boundary-layer flow of non-Newtonian fluids on a horizontal plate. Appl Math Comput, 1995, 68(2-3): 105
    [6] Howell T G, Jeng D R, De Witt K J. Momentum and heat transfer on a continuous moving surface in a power law fluid. Int J Heat Mass Transf, 1997, 40(8): 1853 doi: 10.1016/S0017-9310(96)00247-5
    [7] Rao J H, Jeng D R, De Witt K J. Momentum and heat transfer in a power-law fluid with arbitrary injection/suction at a moving wall. Int J Heat Mass Transf, 1999, 42(15): 2837 doi: 10.1016/S0017-9310(98)00360-3
    [8] Hassanien I A, Abdullah A A, Gorla R S R. Flow and heat transfer in a power-law fluid over a nonisothermal stretching sheet. Math Comput Model, 1998, 28(9): 105 doi: 10.1016/S0895-7177(98)00148-4
    [9] Luna N, Méndez F, Trevi?o C. Conjugated heat transfer in circular ducts with a power-law laminar convection fluid flow. Int J Heat Mass Transf, 2002, 45(3): 655 doi: 10.1016/S0017-9310(01)00147-8
    [10] Chen C H. Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet. J Non Newton Fluid Mech, 2006, 135(2-3): 128 doi: 10.1016/j.jnnfm.2006.01.009
    [11] Ghosh Moulic S, Yao L S. Natural convection along a vertical wavy surface with uniform heat flux. J Heat Transf, 1989, 111(4): 1106 doi: 10.1115/1.3250780
    [12] Ghosh Moulic S, Yao L S. Mixed convection along a wavy surface. J Heat Transf, 1989, 111(4): 974 doi: 10.1115/1.3250813
    [13] Yao L S. Natural convection along a vertical complex wavy surface. Int J Heat Mass Transf, 2006, 49(1-2): 281 doi: 10.1016/j.ijheatmasstransfer.2005.06.026
    [14] Pop I, Nakamura S. Laminar boundary layer flow of power-law fluids over wavy surfaces. Acta Mech, 1996, 115: 55 doi: 10.1007/BF01187428
    [15] Kim E, Chen J L S. Natural convection of non-Newtonian fluids along a wavy vertical plate // 28th National Heat Transfer Conference. Minneapolis, 1991: 45
    [16] Kumari M, Pop I, Takhar H S. Free convection of a non-newtonian power-law fluid from a vertical wavy surface with uniform surface heat flux. ZAMM J Appl Math Mech, 1996, 76(9): 531 doi: 10.1002/zamm.19960760906
    [17] Wang C C, Chen C K. Mixed convection boundary layer flow of non-Newtonian fluids along vertical wavy plates. Int J Heat Fluid Flow, 2002, 23(6): 831 doi: 10.1016/S0142-727X(02)00145-5
    [18] Molla M M, Hossain M A. Radiation effect on mixed convection laminar flow along a vertical wavy surface. Int J Therm Sci, 2007, 46(9): 926 doi: 10.1016/j.ijthermalsci.2006.10.010
    [19] Arunachalam M, Rajappa N R. Thermal boundary layer in liquid metals with variable thermal conductivity. Appl Sci Res, 1978, 34(2): 179
    [20] Pop I, Rashidi M, Gorla R S R. Mixed convection to power-law type non-newtonian fluids from a vertical wall. Polym Plast Technol Eng, 1991, 30(1): 47 doi: 10.1080/03602559108019205
    [21] Subba R, Gorla R, Dakappagari V, et al. Boundary layer flow at a three-dimensional stagnation point in power-law non-Newtonian fluids. Int J Heat Fluid Flow, 1993, 14(4): 408 doi: 10.1016/0142-727X(93)90015-F
    [22] Gorla R S R, Pop I, Lee J K. Convective wall plume in power-law fluid: Second-order correction for the adiabatic wall. W?rme Und Stoffübertragung, 1992, 27(8): 473
    [23] Liu S N, Zheng L C. Rheological synergistic thermal conductivity of HEC-based silicon dioxide nanofluids in shear flow fields. Int J Heat Mass Transf, 2021, 181: 121896 doi: 10.1016/j.ijheatmasstransfer.2021.121896
    [24] Zheng L C, Zhang X X, Ma L X. Fully developed convective heat transfer of power law fluids in a circular tube. Chin Phys Lett, 2008, 25(1): 195 doi: 10.1088/0256-307X/25/1/053
    [25] Lin Y H, Zheng L C, Zhang X X, et al. MHD pseudo-plastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generation. Int J Heat Mass Transf, 2015, 84: 903 doi: 10.1016/j.ijheatmasstransfer.2015.01.099
    [26] Zheng L C, Lin Y H, Zhang X X. Marangoni convection of power law fluids driven by power-law temperature gradient. J Frankl Inst, 2012, 349(8): 2585 doi: 10.1016/j.jfranklin.2012.07.004
    [27] Denier J P, Dabrowski P P. On the boundary-layer equations for power-law fluids. Proc R Soc Lond A, 2004, 460(2051): 3143 doi: 10.1098/rspa.2004.1349
  • 加載中
圖(10)
計量
  • 文章訪問數:  194
  • HTML全文瀏覽量:  24
  • PDF下載量:  25
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-30
  • 網絡出版日期:  2022-11-14

目錄

    /

    返回文章
    返回