Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery
-
摘要: 硫化物全固態鋰金屬電池以其高比能和高安全性得到了越來越多的關注,但是電解質與正負極極材料之間嚴重的界面問題仍然限制其進一步發展. 為解決Li6PS5Cl固態電解質對金屬鋰不穩定的難點,許多工作提出引入合金負極、引入中間界面層以及電解質直接改性等策略,但是都和實際應用存在一定的差距. 考慮到石榴石氧化物固態電解質Li6.4La3Zr1.4Ta0.6O12(LLZTO)具有較高的鋰離子電導率和極好的材料穩定性,而Ag金屬具有良好的導鋰性,因此創新性地提出采用LLZTO與Ag的復合界面層來解決Li6PS5Cl全固態電池的金屬負極界面問題,提高全電池的循環穩定性. 研究了LLZTO和Ag簡單分散復合、均勻分散包覆復合、以及納米球磨復合等不同組成的LLZTO–Ag復合界面層方式對Li6PS5Cl全固態鋰金屬電池負極界面的改善作用. 并探究了優化后的全固態電池的電化學性能. 結果表明,納米球磨復合得到的LLZTO@Ag復合界面層能有效阻止鋰枝晶生長和電池短路. 在最佳工藝下,全固態鋰金屬電池的0.1C首圈效率為77.5%,放電比容量為187.3 mA·h·g?1,經0.3C循環100圈后容量保持率為81.7%.Abstract: Sulfide all-solid-state lithium batteries have received increasing attention owing to their high specific energy density and remarkable safety. However, serious interfacial problems still limit their further development. To solve the problem of instability of the interface between the solid-state electrolyte argyrodite (Li6PS5Cl) and lithium anode, strategies such as introducing an alloy cathode, introducing an intermediate interface layer, and directly modifying the electrolyte have been proposed; however, these methods are not suitable for practical applications. Notably, lithium lanthanum zirconium oxide (LLZTO) exhibits high lithium-ion conductivity and remarkable material stability, and silver (Ag) metal shows satisfactory lithium conductivity. Accordingly, a composite interface layer made of LLZTO and Ag was innovatively proposed to solve the lithium metal anode/Li6PS5Cl interface problem and increase the cycle stability of all-solid-state lithium batteries. We studied the effects of LLZTO–Ag composite interface layers with different combination manners, such as simply dispersed LLZTO–Ag composite, evenly dispersed and coated composite, and ball-milled composite, on the anode interface of Li6PS5Cl all-solid-state lithium metal batteries. The electrochemical performance of an optimized all-solid-state battery was also investigated. The results show that the surface of the LLZTO@Ag composite layer obtained by ball milling is relatively smoother and denser, which can effectively prevent lithium dendrite growth and battery short circuit. Compared with the simply dispersed LLZTO–Ag composite method and the evenly dispersed and coated composite method, the ball-milled composite layer anode method can be used to effectively reduce local lithium deposition current density and successfully solve the short circuit problem of the sulfide solid electrolyte. The first cycle efficiency of the LLZTOpw@Agpw–Lipl all-solid-state battery is 77.5%, and the discharge specific capacity is 187.3 mA·h·g?1. After 100 cycles at 0.3C, the discharge specific capacity is still 125.5 mA·h·g?1, and the capacity retention rate is 81.7%. Additionally, we investigated the electrochemical behavior of all-solid-state lithium metal batteries upon the introduction of the LLZTO–Ag composite interfacial layer by using the AC impedance (EIS) and constant-current intermittent titration technique. The LLZTOpw@Agpw anode shows satisfactory cycle stability for lithium batteries. The impedance of the LLZTOpw@Agpw–Lipl all-solid-state battery exhibits periodic oscillations, indicating that lithium vacancies will be generated in the NCM811 crystal upon extraction of lithium ions, thereby increasing the conductivity of the lithium ions and reducing their migration resistance as well. The effect is most prominent when half of the lithium ions are extracted, but further extraction of lithium ions will lead to too many vacancies in the material, following which extraction of lithium ions will be impeded, thereby increasing the migration resistance of the lithium ions. The interfacial impedance on the cathode side considerably increased during long cycling, thus affecting the subsequent cycling performance, while the interface on the anode side remained essentially stable, highlighting the stabilizing effect of the LLZTO–Ag composite interfacial layer.
-
Key words:
- solid state electrolyte /
- lithium anode /
- composite interface layer /
- Li6PS5Cl /
- performance improvement
-
圖 4 NCM811/LPSC/LLZTOpl/Ag電池的(a)充放電曲線和(b)循環性能圖;NCM811/LPSC/LLZTOpl/Ag/Li電池的(c)充放電曲線和(d)循環性能圖
Figure 4. (a) Charge–discharge curve and (b) cycle performance diagram of the NCM811/LPSC/LLZTOpl/Ag battery; (c) charge–discharge curve and (d) cycle performance diagram of the NCM811/LPSC/LLZTOpl/Ag/Li battery
圖 5 (a~c)體積比1∶1時LLZTOpw@Agpw顆粒在不同放大倍數下的SEM圖;(d~e)質量比1∶1時LLZTOpw@Agpw片表面在不同放大倍數下的SEM圖和(f)對應的EDS面掃圖;(g~h)體積比1∶1時LLZTOpw@Agpw片表面在不同放大倍數下的SEM圖和(i)對應的EDS面掃圖
Figure 5. (a–c) SEM images of LLZTOpw@Agpw particles at different magnifications with a volume ratio of 1∶1; (d–e) SEM images of the surface of LLZTOpw@Agpw sheets with a mass ratio of 1∶1 under different magnifications and (f) the corresponding EDS mapping patterns; (g–h) SEM images of the surface of LLZTOpw@Agpw sheets under different magnifications at a volume ratio of 1∶1 and (i) the corresponding EDS mapping patterns
圖 6 NCM811/LPSC/LLZTOpw@Agpw電池的(a)充放電曲線和(b)循環性能圖;NCM811/LPSC/LLZTOpl/LLZTOpw@Agpw/Li電池的(c)充放電曲線和(d)循環性能圖
Figure 6. (a) Charge–discharge curve and (b) cycle performance of the NCM811/LPSC/LLZTOpw@Agpw battery; (c) charge–discharge curve and (d) cycle performance of the NCM811/LPSC/LLZTOpl/LLZTOpw@Agpw/Li battery
圖 8 GITTNCM811/LPSC/LLZTOpw@Agpw/Li全固態電池的(a)GITT圖和(b)對應的細節圖;(c)第一圈充電時、(d)第一圈放電時、(e)第二圈充電時的瞬時壓降變化圖和(f)對應的歐姆阻抗結果
Figure 8. (a) GITT diagram and (b) the corresponding detailed diagram of the GITTNCM811/LPSC/LLZTOpw@Agpw/Li all-solid-state battery; (c) during the first cycle of charging, (d) during the first cycle of discharge, (e) graph of the instantaneous voltage drop during the second cycle of charging, and (f) the corresponding ohmic impedance results
表 1 不同比例的LLZTO@Ag復合層表面的面掃原子比結果表
Table 1. Surface scan atomic ratio results of LLZTO@Ag composite layers with different ratios
Sample(LLZTO@Ag) O Ta Zr La Ag Mass ratio of 1∶1 55.97 1.35 4.94 7.66 30.05 Volume ratio of 1∶1 43.15 0.85 4.08 6.58 45.24 259luxu-164 -
參考文獻
[1] Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Mater, 2011, 10(9): 682 doi: 10.1038/nmat3066 [2] Wang S, Zhang Y B, Zhang X, et al. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces, 2018, 10(49): 42279 doi: 10.1021/acsami.8b15121 [3] Yu C, van Eijck L, Ganapathy S, et al. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim Acta, 2016, 215: 93 doi: 10.1016/j.electacta.2016.08.081 [4] Banerjee A, Wang X F, Fang C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev, 2020, 120(14): 6878 doi: 10.1021/acs.chemrev.0c00101 [5] Zhang W B, Weber D A, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2017, 9(21): 17835 doi: 10.1021/acsami.7b01137 [6] Luo S T, Wang Z Y, Li X L, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun, 2021, 12: 6968 doi: 10.1038/s41467-021-27311-7 [7] Kato A, Suyama M, Hotehama C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4Interfaces modified with Au thin films. J Electrochem Soc, 2018, 165(9): A1950 doi: 10.1149/2.1451809jes [8] Li M Q, Zhou D, Wang C, et al. In situ formed Li–Ag alloy interface enables Li10GeP2S12-based all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2021, 13(42): 50076 doi: 10.1021/acsami.1c16356 [9] Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy, 2020, 5(4): 299 doi: 10.1038/s41560-020-0575-z [10] Liang J W, Li X N, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries. Adv Energy Mater, 2019, 9(38): 1902125 doi: 10.1002/aenm.201902125 [11] Wang C H, Adair K R, Liang J W, et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv Funct Mater, 2019, 29(26): 1900392 doi: 10.1002/adfm.201900392 [12] Simon F J, Hanauer M, Richter F H, et al. Interphase formation of PEO20: LiTFSI–Li6PS5Cl composite electrolytes with lithium metal. ACS Appl Mater Interfaces, 2020, 12(10): 11713 doi: 10.1021/acsami.9b22968 [13] Wang Y X, Lu D P, Xiao J, et al. Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. Energy Storage Mater, 2019, 19: 80 [14] Sun Z, Lai Y Q, lv N, et al. Insights on the properties of the O-doped argyrodite sulfide solid electrolytes (Li6PS5- x ClO x , x=0–1). ACS Appl Mater Interfaces, 2021, 13(46): 54924 doi: 10.1021/acsami.1c14573 [15] Lu Y, Zhao C Z, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci Adv, 2021, 7(38): eabi5520 doi: 10.1126/sciadv.abi5520 [16] Webb S A, Baggetto L, Bridges C A, et al. The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources, 2014, 248: 1105 doi: 10.1016/j.jpowsour.2013.10.033 [17] Santhosha A L, Medenbach L, Buchheim J R, et al. The indium?lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter Supercaps, 2019, 2(6): 524 doi: 10.1002/batt.201800149 [18] Zhang Z H, Chen S J, Yang J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl Mater Interfaces, 2018, 10(3): 2556 doi: 10.1021/acsami.7b16176 [19] Bai Y, Zhao Y B, Li W D, et al. Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li–S battery. Chem Eng J, 2020, 396: 125334 doi: 10.1016/j.cej.2020.125334 [20] Wan H L, Zhang J X, Xia J L, et al. F and N rich solid electrolyte for stable all-solid-state battery. Adv Funct Mater, 2022, 32(15): 2110876 doi: 10.1002/adfm.202110876 [21] Kim D H, Lee H A, Song Y B, et al. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. J Power Sources, 2019, 426: 143 doi: 10.1016/j.jpowsour.2019.04.028 [22] Tan D H S, Chen Y T, Yang H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science, 2021, 373(6562): 1494 doi: 10.1126/science.abg7217 [23] Shen F, Guo W C, Zeng D Y, et al. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl Mater Interfaces, 2020, 12(27): 30313 doi: 10.1021/acsami.0c04850 [24] Gupta A, Kazyak E, Dasgupta N P, et al. Electrochemical and surface chemistry analysis of lithium lanthanum zirconium tantalum oxide (LLZTO)/liquid electrolyte (LE) interfaces. J Power Sources, 2020, 474: 228598 doi: 10.1016/j.jpowsour.2020.228598 [25] Gao J, Guo W C, Yin Y T, et al. Well-contacted Li/LLZTO interface by citric acid aqueous treatment for solid-state Li metal batteries. Mater Lett, 2020, 280: 128543 doi: 10.1016/j.matlet.2020.128543 -