<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于LLZTO@Ag復合層負極改性的硫化物全固態鋰電池及其性能

李凡群 孫振 訚碩 劉絲靚 張宗良 劉芳洋

李凡群, 孫振, 訚碩, 劉絲靚, 張宗良, 劉芳洋. 基于LLZTO@Ag復合層負極改性的硫化物全固態鋰電池及其性能[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.09.26.003
引用本文: 李凡群, 孫振, 訚碩, 劉絲靚, 張宗良, 劉芳洋. 基于LLZTO@Ag復合層負極改性的硫化物全固態鋰電池及其性能[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.09.26.003
LI Fanqun, SUN Zhen, YIN Shuo, LIU Siliang, ZHANG Zongliang, LIU Fangyang. Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.26.003
Citation: LI Fanqun, SUN Zhen, YIN Shuo, LIU Siliang, ZHANG Zongliang, LIU Fangyang. Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.26.003

基于LLZTO@Ag復合層負極改性的硫化物全固態鋰電池及其性能

doi: 10.13374/j.issn2095-9389.2022.09.26.003
基金項目: 國家重點研發計劃資助項目(2018YFE0203400);國家自然科學基金資助項目(51720105014)
詳細信息
    通訊作者:

    E-mail: zongliang.zhang@csu.edu.cn

  • 中圖分類號: TM912

Novel LLZTO@Ag composite layer for the stable anode of sulfide all-solid-state lithium battery

More Information
  • 摘要: 硫化物全固態鋰金屬電池以其高比能和高安全性得到了越來越多的關注,但是電解質與正負極極材料之間嚴重的界面問題仍然限制其進一步發展. 為解決Li6PS5Cl固態電解質對金屬鋰不穩定的難點,許多工作提出引入合金負極、引入中間界面層以及電解質直接改性等策略,但是都和實際應用存在一定的差距. 考慮到石榴石氧化物固態電解質Li6.4La3Zr1.4Ta0.6O12(LLZTO)具有較高的鋰離子電導率和極好的材料穩定性,而Ag金屬具有良好的導鋰性,因此創新性地提出采用LLZTO與Ag的復合界面層來解決Li6PS5Cl全固態電池的金屬負極界面問題,提高全電池的循環穩定性. 研究了LLZTO和Ag簡單分散復合、均勻分散包覆復合、以及納米球磨復合等不同組成的LLZTO–Ag復合界面層方式對Li6PS5Cl全固態鋰金屬電池負極界面的改善作用. 并探究了優化后的全固態電池的電化學性能. 結果表明,納米球磨復合得到的LLZTO@Ag復合界面層能有效阻止鋰枝晶生長和電池短路. 在最佳工藝下,全固態鋰金屬電池的0.1C首圈效率為77.5%,放電比容量為187.3 mA·h·g?1,經0.3C循環100圈后容量保持率為81.7%.

     

  • 圖  1  NCM811/LPSC/LLZTO/Ag電池的(a)充放電曲線和(b)循環性能圖;NCM811/LPSC/LLZTO/Ag/Li電池的(c)充放電曲線和(d)循環性能圖

    Figure  1.  (a) Charge–discharge curve and (b) cycle performance diagram of the NCM811/LPSC/LLZTO/Ag battery; (c) charge–discharge curve and (d) cycle performance diagram of the NCM811/LPSC/LLZTO/Ag/Li battery

    圖  2  (a, b)LLZTOpw–Agpl–Lipl全固態電池循環后在不同放大倍數下的截面圖;(c)15 kV下的SEM圖;(d)圖(c)對應的EDS面掃圖

    Figure  2.  (a, b) Cross-sectional views at different magnifications of the LLZTOpw–Agpl–Lipl all-solid-state battery after cycling; (c) SEM image at 15 kV; (d) EDS mapping patterns of the image in (c)

    圖  3  (a)Ag箔表面的SEM圖;(b, c)不同放大倍數下LLZTO沉積在Ag箔表面的SEM圖;(d)圖c對應的EDS面掃圖

    Figure  3.  (a) SEM image of Ag foil surface; (b, c) SEM images of LLZTO deposited on Ag foil surface under different magnifications; (d) EDS mapping patterns of the image in (c)

    圖  4  NCM811/LPSC/LLZTOpl/Ag電池的(a)充放電曲線和(b)循環性能圖;NCM811/LPSC/LLZTOpl/Ag/Li電池的(c)充放電曲線和(d)循環性能圖

    Figure  4.  (a) Charge–discharge curve and (b) cycle performance diagram of the NCM811/LPSC/LLZTOpl/Ag battery; (c) charge–discharge curve and (d) cycle performance diagram of the NCM811/LPSC/LLZTOpl/Ag/Li battery

    圖  5  (a~c)體積比1∶1時LLZTOpw@Agpw顆粒在不同放大倍數下的SEM圖;(d~e)質量比1∶1時LLZTOpw@Agpw片表面在不同放大倍數下的SEM圖和(f)對應的EDS面掃圖;(g~h)體積比1∶1時LLZTOpw@Agpw片表面在不同放大倍數下的SEM圖和(i)對應的EDS面掃圖

    Figure  5.  (a–c) SEM images of LLZTOpw@Agpw particles at different magnifications with a volume ratio of 1∶1; (d–e) SEM images of the surface of LLZTOpw@Agpw sheets with a mass ratio of 1∶1 under different magnifications and (f) the corresponding EDS mapping patterns; (g–h) SEM images of the surface of LLZTOpw@Agpw sheets under different magnifications at a volume ratio of 1∶1 and (i) the corresponding EDS mapping patterns

    圖  6  NCM811/LPSC/LLZTOpw@Agpw電池的(a)充放電曲線和(b)循環性能圖;NCM811/LPSC/LLZTOpl/LLZTOpw@Agpw/Li電池的(c)充放電曲線和(d)循環性能圖

    Figure  6.  (a) Charge–discharge curve and (b) cycle performance of the NCM811/LPSC/LLZTOpw@Agpw battery; (c) charge–discharge curve and (d) cycle performance of the NCM811/LPSC/LLZTOpl/LLZTOpw@Agpw/Li battery

    圖  7  NCM811/LPSC/LLZTOpw@Agpw/Li全固態電池的Nyquist圖.(a)充電前;(b)第一圈充滿電;(c)第一圈放完電時

    Figure  7.  Nyquist plots of the NCM811/LPSC/LLZTOpw@Agpw/Li all-solid-state battery∶ (a) before charging; (b) fully charged in the first cycle; (c) fully discharged in the first cycle

    圖  8  GITTNCM811/LPSC/LLZTOpw@Agpw/Li全固態電池的(a)GITT圖和(b)對應的細節圖;(c)第一圈充電時、(d)第一圈放電時、(e)第二圈充電時的瞬時壓降變化圖和(f)對應的歐姆阻抗結果

    Figure  8.  (a) GITT diagram and (b) the corresponding detailed diagram of the GITTNCM811/LPSC/LLZTOpw@Agpw/Li all-solid-state battery; (c) during the first cycle of charging, (d) during the first cycle of discharge, (e) graph of the instantaneous voltage drop during the second cycle of charging, and (f) the corresponding ohmic impedance results

    圖  9  (a)LLZTO@Ag/LPSC/Li電池的CV循環曲線圖和(b)對應的局部放大圖

    Figure  9.  (a) CV cycling curve of the LLZTO@Ag/LPSC/Li battery and (b) the corresponding local magnified view

    表  1  不同比例的LLZTO@Ag復合層表面的面掃原子比結果表

    Table  1.   Surface scan atomic ratio results of LLZTO@Ag composite layers with different ratios

    Sample(LLZTO@Ag)OTaZrLaAg
    Mass ratio of 1∶155.971.354.947.6630.05
    Volume ratio of 1∶143.150.854.086.5845.24
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Kamaya N, Homma K, Yamakawa Y, et al. A lithium superionic conductor. Nature Mater, 2011, 10(9): 682 doi: 10.1038/nmat3066
    [2] Wang S, Zhang Y B, Zhang X, et al. High-conductivity argyrodite Li6PS5Cl solid electrolytes prepared via optimized sintering processes for all-solid-state lithium-sulfur batteries. ACS Appl Mater Interfaces, 2018, 10(49): 42279 doi: 10.1021/acsami.8b15121
    [3] Yu C, van Eijck L, Ganapathy S, et al. Synthesis, structure and electrochemical performance of the argyrodite Li6PS5Cl solid electrolyte for Li-ion solid state batteries. Electrochim Acta, 2016, 215: 93 doi: 10.1016/j.electacta.2016.08.081
    [4] Banerjee A, Wang X F, Fang C C, et al. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem Rev, 2020, 120(14): 6878 doi: 10.1021/acs.chemrev.0c00101
    [5] Zhang W B, Weber D A, Weigand H, et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2017, 9(21): 17835 doi: 10.1021/acsami.7b01137
    [6] Luo S T, Wang Z Y, Li X L, et al. Growth of lithium-indium dendrites in all-solid-state lithium-based batteries with sulfide electrolytes. Nat Commun, 2021, 12: 6968 doi: 10.1038/s41467-021-27311-7
    [7] Kato A, Suyama M, Hotehama C, et al. High-temperature performance of all-solid-state lithium-metal batteries having Li/Li3PS4Interfaces modified with Au thin films. J Electrochem Soc, 2018, 165(9): A1950 doi: 10.1149/2.1451809jes
    [8] Li M Q, Zhou D, Wang C, et al. In situ formed Li–Ag alloy interface enables Li10GeP2S12-based all-solid-state lithium batteries. ACS Appl Mater Interfaces, 2021, 13(42): 50076 doi: 10.1021/acsami.1c16356
    [9] Lee Y G, Fujiki S, Jung C, et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver-carbon composite anodes. Nat Energy, 2020, 5(4): 299 doi: 10.1038/s41560-020-0575-z
    [10] Liang J W, Li X N, Zhao Y, et al. An air-stable and dendrite-free Li anode for highly stable all-solid-state sulfide-based Li batteries. Adv Energy Mater, 2019, 9(38): 1902125 doi: 10.1002/aenm.201902125
    [11] Wang C H, Adair K R, Liang J W, et al. Solid-state plastic crystal electrolytes: Effective protection interlayers for sulfide-based all-solid-state lithium metal batteries. Adv Funct Mater, 2019, 29(26): 1900392 doi: 10.1002/adfm.201900392
    [12] Simon F J, Hanauer M, Richter F H, et al. Interphase formation of PEO20: LiTFSI–Li6PS5Cl composite electrolytes with lithium metal. ACS Appl Mater Interfaces, 2020, 12(10): 11713 doi: 10.1021/acsami.9b22968
    [13] Wang Y X, Lu D P, Xiao J, et al. Superionic conduction and interfacial properties of the low temperature phase Li7P2S8Br0.5I0.5. Energy Storage Mater, 2019, 19: 80
    [14] Sun Z, Lai Y Q, lv N, et al. Insights on the properties of the O-doped argyrodite sulfide solid electrolytes (Li6PS5- x ClO x , x=0–1). ACS Appl Mater Interfaces, 2021, 13(46): 54924 doi: 10.1021/acsami.1c14573
    [15] Lu Y, Zhao C Z, Zhang R, et al. The carrier transition from Li atoms to Li vacancies in solid-state lithium alloy anodes. Sci Adv, 2021, 7(38): eabi5520 doi: 10.1126/sciadv.abi5520
    [16] Webb S A, Baggetto L, Bridges C A, et al. The electrochemical reactions of pure indium with Li and Na: Anomalous electrolyte decomposition, benefits of FEC additive, phase transitions and electrode performance. J Power Sources, 2014, 248: 1105 doi: 10.1016/j.jpowsour.2013.10.033
    [17] Santhosha A L, Medenbach L, Buchheim J R, et al. The indium?lithium electrode in solid-state lithium-ion batteries: phase formation, redox potentials, and interface stability. Batter Supercaps, 2019, 2(6): 524 doi: 10.1002/batt.201800149
    [18] Zhang Z H, Chen S J, Yang J, et al. Interface re-engineering of Li10GeP2S12 electrolyte and lithium anode for all-solid-state lithium batteries with ultralong cycle life. ACS Appl Mater Interfaces, 2018, 10(3): 2556 doi: 10.1021/acsami.7b16176
    [19] Bai Y, Zhao Y B, Li W D, et al. Organic-inorganic multi-scale enhanced interfacial engineering of sulfide solid electrolyte in Li–S battery. Chem Eng J, 2020, 396: 125334 doi: 10.1016/j.cej.2020.125334
    [20] Wan H L, Zhang J X, Xia J L, et al. F and N rich solid electrolyte for stable all-solid-state battery. Adv Funct Mater, 2022, 32(15): 2110876 doi: 10.1002/adfm.202110876
    [21] Kim D H, Lee H A, Song Y B, et al. Sheet-type Li6PS5Cl-infiltrated Si anodes fabricated by solution process for all-solid-state lithium-ion batteries. J Power Sources, 2019, 426: 143 doi: 10.1016/j.jpowsour.2019.04.028
    [22] Tan D H S, Chen Y T, Yang H D, et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science, 2021, 373(6562): 1494 doi: 10.1126/science.abg7217
    [23] Shen F, Guo W C, Zeng D Y, et al. A simple and highly efficient method toward high-density garnet-type LLZTO solid-state electrolyte. ACS Appl Mater Interfaces, 2020, 12(27): 30313 doi: 10.1021/acsami.0c04850
    [24] Gupta A, Kazyak E, Dasgupta N P, et al. Electrochemical and surface chemistry analysis of lithium lanthanum zirconium tantalum oxide (LLZTO)/liquid electrolyte (LE) interfaces. J Power Sources, 2020, 474: 228598 doi: 10.1016/j.jpowsour.2020.228598
    [25] Gao J, Guo W C, Yin Y T, et al. Well-contacted Li/LLZTO interface by citric acid aqueous treatment for solid-state Li metal batteries. Mater Lett, 2020, 280: 128543 doi: 10.1016/j.matlet.2020.128543
  • 加載中
圖(9) / 表(1)
計量
  • 文章訪問數:  272
  • HTML全文瀏覽量:  33
  • PDF下載量:  33
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-26
  • 網絡出版日期:  2023-03-14

目錄

    /

    返回文章
    返回