<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

不同改質劑對硅錳渣微晶玻璃析晶性能調控的比較

楊金成 李宇 楊天

楊金成, 李宇, 楊天. 不同改質劑對硅錳渣微晶玻璃析晶性能調控的比較[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.09.24.003
引用本文: 楊金成, 李宇, 楊天. 不同改質劑對硅錳渣微晶玻璃析晶性能調控的比較[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.09.24.003
YANG Jincheng, LI Yu, YANG Tian. Comparative of different modifiers on the crystallization properties of glass–ceramics derived from silicon manganese slag[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.24.003
Citation: YANG Jincheng, LI Yu, YANG Tian. Comparative of different modifiers on the crystallization properties of glass–ceramics derived from silicon manganese slag[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.24.003

不同改質劑對硅錳渣微晶玻璃析晶性能調控的比較

doi: 10.13374/j.issn2095-9389.2022.09.24.003
基金項目: 國家自然科學基金資助項目(U1960201)
詳細信息
    通訊作者:

    E-mail: leeuu00@sina.com

  • 中圖分類號: TF09

Comparative of different modifiers on the crystallization properties of glass–ceramics derived from silicon manganese slag

More Information
  • 摘要: 以硅錳渣為主要原料,分別添加高硅、高鐵和含鉻的改質劑硅石、鐵鱗和鉻鐵渣,采用Petrurgic一步法制備了微晶玻璃,對微晶玻璃樣品進行X射線衍射(XRD) 、差示掃描量熱分析(DSC)、掃描電子顯微鏡(SEM-EDS)等測試和分析,討論了添加不同改質劑對硅錳渣微晶玻璃礦相和性能的影響規律. 研究表明: 將改質熔渣冷卻至析晶溫度保溫和700 ℃退火后,獲得滿足天然花崗巖石材對性能要求的微晶玻璃. 相對于原硅錳渣,改質熔渣的析晶性能都獲得了顯著提升,其中鐵鱗和鉻鐵渣更有利于促進粒度為0.2~0.5 μm粒狀或短棒狀輝石晶體形成,這些晶體為固溶了Fe、Mn離子的普通輝石(Ca(Mg,Fe,Al)(Si,Al)2O6)和鈣錳輝石(CaMnSi2O6)等. 添加改質劑均改變了硅錳渣中Mn離子的賦存形態,原渣中Mn離子主要以玻璃相和硫化錳形式存在,改質后樣品中的錳離子主要賦存于鈣錳輝石中.

     

  • 圖  1  原料的XRD圖譜. (a) 硅錳渣; (b) 硅石; (c) 鐵鱗; (d) 鉻鐵渣

    Figure  1.  XRD patterns of raw materials: (a) silicon-manganese slag; (b) silica; (c) iron scale; (d) ferrochrome slag

    圖  2  硅錳渣制備微晶玻璃的熱制度

    Figure  2.  Thermal regime for preparing glass–ceramics from silicon–manganese slag

    圖  3  基礎玻璃水淬渣的DSC曲線

    Figure  3.  DSC curve of basic glass water-quenched slag

    圖  4  S1~S4樣品XRD分析

    Figure  4.  XRD patterns of S1~S4 samples

    圖  5  不同Al2O3質量分數的CaO–SiO2–MgO–Al2O3系相圖. (a) 13%; (b) 15%

    Figure  5.  Phase diagram of CaO–SiO2–MgO–Al2O3 with different Al2O3: (a) 13% mass fraction; (b) 15% mass fraction

    圖  6  微晶玻璃樣品的SEM圖. (a) S1; (b) S2; (c) S3; (d) S4

    Figure  6.  SEM images of glass–ceramic samples: (a) S1; (b) S2; (c) S3; (d) S4

    圖  7  S2~S4微晶玻璃樣品的能譜EDS圖. (a) Pt.1; (b) Pt.2; (c) Pt.3; (d) Pt.4

    Figure  7.  EDS analysis of S2~S4 glass-ceramic samples: (a) Pt.1; (b) Pt.2; (c) Pt.3; (d) Pt.4

    圖  8  S1~S4樣品的力學性能. (a) 抗折強度; (b) 體積密度; (c) 吸水率

    Figure  8.  Mechanical properties of S1~S4 samples: (a) flexural strength; (b) bulk density; (c) water absorption

    表  1  原料的化學組成(質量分數)

    Table  1.   Chemical composition of the raw material %

    Raw material compositionCaOSiO2Al2O3MgOMnOFe2O3*K2OP2O5TiO2Cr2O3SO3*BaOOther
    Silicon manganese slag27.2738.4013.243.607.922.271.600.410.250.261.452.490.84
    Silica3.5085.402.581.052.922.141.020.420.110.200.66
    Iron scale0.403.461.040.5487.620.485.080.790.59
    Ferrochrome slag3.3028.7824.1627.080.424.210.170.380.808.002.250.45
    Notes:“*” For only the elements contents were detected by XRF, the results of all Fe and S elements were presented here in the form of Fe2O3 and SO3.
    下載: 導出CSV

    表  2  配合料的主要化學組成(質量分數)

    Table  2.   Chemical composition of the formula %

    SampleCaOSiO2Al2O3MgOMnOFe2O3K2OP2O5TiO2Cr2O3SO3BaOOther
    S127.2738.4013.243.607.922.271.600.410.250.261.452.490.84
    S224.8943.1012.173.357.422.261.540.410.240.251.312.240.82
    S324.5834.9112.023.247.1810.811.440.420.220.741.392.240.81
    S424.8737.4414.335.957.172.461.460.410.311.031.532.240.80
    下載: 導出CSV

    表  3  熔渣改質具有的顯熱和改質劑熔解需要的熱量對比

    Table  3.   Comparison of sensible heat of slag modification and required heat of melting modifier

    SampleSlag appreciable heat, Qs /JModifier absorbs heat, Qen/J
    Silicon–manganese slag (90%, mass fraction)+silica (10%, mass fraction)(S2)3135615203
    Silicon–manganese slag (90%, mass fraction)+iron scale (10%, mass fraction)(S3)3135612495
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Li X, Peng F. Analysis of the current status and development trend of China’s ferroalloy industry. Metallur Economic Manag, 2013(5): 3 doi: 10.3969/j.issn.1002-1779.2013.05.007

    李曉, 彭鋒. 我國鐵合金行業現狀及發展趨勢分析. 冶金經濟與管理, 2013(5):3 doi: 10.3969/j.issn.1002-1779.2013.05.007
    [2] Li Y, Liu X M, Zhang Z Q. Metallurgical Solid Waste Material Utilization. Beijing: China Building Materials Industry Press, 2022

    李宇, 劉曉明, 張增起. 冶金固廢材料化利用. 北京:中國建材工業出版社, 2022
    [3] Xin X, Tan Z X, Zhao J X, et al. Heat treatment process optimization of microcrystalline cast stone from silico–manganese slag by one-step preparation. J Chin Ceram Soc, 2022, 50(6): 1677 doi: 10.14062/j.issn.0454-5648.20210843

    辛鑫, 譚澤馨, 趙俊學, 等. 硅錳渣一步法制備微晶鑄石的熱處理工藝及性能. 硅酸鹽學報, 2022, 50(6):1677 doi: 10.14062/j.issn.0454-5648.20210843
    [4] Dai W, Shu L. Process Technology of Ferroalloy Production. Beijing: Metallurgical Industry Press, 2015

    戴維, 舒莉. 鐵合金工程技術. 北京:冶金工業出版社, 2015
    [5] Nath S K, Kumar S. Evaluation of the suitability of ground granulated silico–manganese slag in Portland slag cement. Constr Build Mater, 2016, 125: 127 doi: 10.1016/j.conbuildmat.2016.08.025
    [6] Patil A V, Pande A M. Behaviour of silico manganese slag manufactured aggregate as material for road and rail track construction. Adv Mater Res, 2011, 255-260: 3258 doi: 10.4028/www.scientific.net/AMR.255-260.3258
    [7] Choi H B, Kim J M. Properties of silicon manganese slag as an aggregate for concrete depending on cooling conditions. J Mater Cycles Waste Manag, 2020, 22: 1067 doi: 10.1007/s10163-020-01003-8
    [8] Li J Q, Mu Y T. Discussion of the feasibility about cinder wool prepared by ferromanganesesilicon slag. Ferro-Alloys, 2016, 47(1): 35 doi: 10.16122/j.cnki.issn1001-1943.2016.01.009

    李俊強, 穆宇同. 淺談利用錳硅渣制備礦渣棉制品的可行性. 鐵合金, 2016, 47(1):35 doi: 10.16122/j.cnki.issn1001-1943.2016.01.009
    [9] Miao X W, Bai Z T, Qiu G B, et al. Preparation of transparent Mn-doped CaF2 glass–ceramics from silicon–manganese slag: Dependence of colour-controllable change on slag addition and crystallization behavior. J Eur Ceram Soc, 2020, 40(8): 3249 doi: 10.1016/j.jeurceramsoc.2020.02.029
    [10] Khater G A. The use of Saudi slag for the production of glass–ceramic materials. Ceram Int, 2002, 28(1): 59 doi: 10.1016/S0272-8842(01)00058-X
    [11] Yang L, Zhang H B, Cao J X. Preparation of ecology water penetrable brick using silicon manganese slag. New Build Mater, 2007, 34(6): 27 doi: 10.3969/j.issn.1001-702X.2007.06.010

    楊林, 張洪波, 曹建新. 硅錳渣制生態滲水磚. 新型建筑材料, 2007, 34(6):27 doi: 10.3969/j.issn.1001-702X.2007.06.010
    [12] Rawlings R D, Wu J P, Boccaccini A R. Glass–ceramics: Their production from wastes—a review. J Mater Sci, 2006, 41(3): 733 doi: 10.1007/s10853-006-6554-3
    [13] Zhao X Y, Yang T, Yang J C, et al. Effects of temperature regime on structure and properties of copper slag glass–ceramics by one-step method. Nonferrous Met Sci Eng, 2023, 14(1): 8 doi: 10.13264/j.cnki.ysjskx.2023.01.012

    趙新宇, 楊天, 楊金成, 等. 熱制度對銅渣微晶玻璃結構和性能的影響規律. 有色金屬科學與工程, 2023, 14(1):8 doi: 10.13264/j.cnki.ysjskx.2023.01.012
    [14] Mei S X, Pei K P, He F, et al. Structure and properties of molten blast furnace slag glass–ceramics. J Synth Cryst, 2017, 46(4): 698 doi: 10.3969/j.issn.1000-985X.2017.04.023

    梅書霞, 裴可鵬, 何峰, 等. 高爐熔渣微晶玻璃的結構與性能研究. 人工晶體學報, 2017, 46(4):698 doi: 10.3969/j.issn.1000-985X.2017.04.023
    [15] Shu Z, Zhou J, Wang Y X. The preparation of cast stone from thermal phosphorous slag liquid. Acta Petrol Mineral, 2008, 27(2): 152 doi: 10.3969/j.issn.1000-6524.2008.02.007

    舒杼, 周俊, 王焰新. 利用高溫磷渣液直接制備微晶鑄石的模擬研究. 巖石礦物學雜志, 2008, 27(2):152 doi: 10.3969/j.issn.1000-6524.2008.02.007
    [16] Jilin Ferroalloy Co. , Ltd. , Institute of Geology, Chinese Academy of Sciences. Direct production of cast stone from hot slag of ferroalloy. Nonferrous Met, 1973(S1): 1

    吉林鐵合金廠, 中國科學院地質研究所. 利用鐵合金的熾熱爐渣直接生產鑄石. 有色金屬, 1973(增1):1
    [17] Liu X P, Pan G F, Zhao Y F, et al. Current status of Mn pollution in groundwater and progress in treatment technology. Mod Chem Res, 2021(23): 89 doi: 10.3969/j.issn.1672-8114.2021.23.030

    劉學鵬, 潘高峰, 趙遙菲, 等. 地下水中錳污染現狀及治理技術進展. 當代化工研究, 2021(23):89 doi: 10.3969/j.issn.1672-8114.2021.23.030
    [18] Mudersbach D, Drissen P, Motz H. Improved slag qualities by liquid slag treatment // The 2nd International Slag Valorization Symposium. Leuven, 2011: 299
    [19] Wang W, Liao W, Wu X R, et al. Study on occurrence and concentrating behavior of chromium in stainless steel slag. Multipurp Util Miner Resour, 2012(3): 42 doi: 10.3969/j.issn.1000-6532.2012.03.011

    王偉, 廖偉, 武杏榮, 等. 不銹鋼渣中鉻的賦存狀態與鉻的富集行為研究. 礦產綜合利用, 2012(3):42 doi: 10.3969/j.issn.1000-6532.2012.03.011
    [20] Krausova K, Gautron L, Karnis A, et al. Glass ceramics and mineral materials for the immobilization of lead and cadmium. Ceram Int, 2016, 42(7): 8779 doi: 10.1016/j.ceramint.2016.02.119
    [21] Cao L H, Zhao Q. Influence of Al2O3 modification on enrichment behavior of chromium in stainless steel slag. Steelmaking, 2019, 35(5): 75

    操龍虎, 趙青. Al2O3對不銹鋼渣中鉻富集行為的影響機制. 煉鋼, 2019, 35(5):75
    [22] Dai W B. Study on Steel Slag Hot Modification Process, Equipment and Preparation for GlassCeramics Manufacturing [Dissertation]. Beijing: University of Science and Technology Beijing, 2016

    代文彬. 鋼渣熱態改質的工藝、裝備及制備微晶玻璃的研究[學術論文]. 北京:北京科技大學, 2016
    [23] Peng R X, Han H, Lin H J, et al. Effect of MgO content on structure and properties of glass-ceramics. Bull Chin Ceram Soc, 2021, 40(10): 3497 doi: 10.3969/j.issn.1001-1625.2021.10.gsytb202110043

    彭瑞欣, 韓韓, 林鴻劍, 等. MgO含量對微晶玻璃結構及性能的影響. 硅酸鹽通報, 2021, 40(10):3497 doi: 10.3969/j.issn.1001-1625.2021.10.gsytb202110043
    [24] Yang Z J, Li Y, Cang D Q, et al. Influence of Al2O3 content on structure and properties of glass–ceramics prepared with steel slag extracted iron and fly ash. Chin J Environ Eng, 2012, 6(12): 4631

    楊志杰, 李宇, 蒼大強, 等. Al2O3含量對提鐵后的鋼渣及粉煤灰微晶玻璃結構與性能的影響. 環境工程學報, 2012, 6(12):4631
    [25] Wang R X, Wang Y C, Cao P F, et al. Optimization of preparation of glass–ceramics nucleating agent by blast furnace slag and fly ash. China Ceram, 2020, 56(11): 44 doi: 10.16521/j.cnki.issn.1001-9642.2020.11.007

    王瑞鑫, 王藝慈, 曹鵬飛, 等. 高爐渣和粉煤灰制備微晶玻璃晶核劑的優化. 中國陶瓷, 2020, 56(11):44 doi: 10.16521/j.cnki.issn.1001-9642.2020.11.007
    [26] Wang H Y. Effect of Temperature Distribution on Crystal Phase and Properties of Molten Slag Cast Stone During Cooling [Dissertation]. Beijing: University of Science and Technology Beijing, 2018

    王宏宇. 熔渣鑄石降溫過程中溫度分布對晶相和性能的影響[學術論文]. 北京:北京科技大學, 2018
    [27] Yu Q C, Yan C P, Deng Y, et al. Effect of Fe2O3 on non-isothermal crystallization of CaO–MgO–Al2O3–SiO2 glass. Trans Nonferrous Met Soc China, 2015, 25(7): 2279 doi: 10.1016/S1003-6326(15)63842-0
    [28] Zhao M Z, Cao J W, Wang Z, et al. Insight into the dual effect of Fe2O3 addition on the crystallization of CaO–MgO–Al2O3–SiO2 glass–ceramics. J Non Cryst Solids, 2019, 513: 144 doi: 10.1016/j.jnoncrysol.2019.03.021
    [29] Li B, Wang S L, Fang Y. Effect of Cr2O3 addition on crystallization, microstructure and properties of Li2O–Al2O3–SiO2 glass–ceramics. J Alloys Compd, 2017, 693: 9 doi: 10.1016/j.jallcom.2016.09.043
    [30] Zhang S, Zhang Y L, Qu Z M. Effects of soluble Cr2O3 doping on the glass structure, microstructure, crystallization behavior, and properties of MgO–Al2O3–SiO2 sapphirine glass ceramics. Mater Chem Phys, 2020, 252: 123115 doi: 10.1016/j.matchemphys.2020.123115
    [31] Ye D N. Cast Stone Research: Proceedings. Beijing: Science Press, 1978

    葉大年. 鑄石研究:論文集. 北京:科學出版社, 1978
    [32] Khater G A, Abdel-Motelib A, El Manawi A W, et al. Glass–ceramics materials from basaltic rocks and some industrial waste. J Non Cryst Solids, 2012, 358(8): 1128 doi: 10.1016/j.jnoncrysol.2012.02.010
    [33] Lu X, Li Y, Ma S, et al. Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat. Chin J Eng, 2016, 38(10): 1386

    盧翔, 李宇, 馬帥, 等. 利用顯熱對熔渣進行直接改質的熱平衡分析及試驗驗證. 工程科學學報, 2016, 38(10):1386
    [34] Li B W, Du Y S, Zhang X F, et al. Effects of iron oxide on the crystallization kinetics of Baiyunebo tailing glass–ceramics. Trans Indian Ceram Soc, 2013, 72(2): 119 doi: 10.1080/0371750X.2013.795718
    [35] Zheng X Z, Li D Z, Shen B M. A discussion about the conditions for the synthesis of clinopyroxenes in the nonequilibrium. Chin J Geol, 1973, 8(4): 307

    鄭學正, 李達周, 沈步明. 不平衡條件下單斜輝石形成的一些探討. 地質科學, 1973, 8(4):307
    [36] Ye D L. Handbook of Thermodynamic Data for Practical Inorganic Compounds. 2nd Ed. Beijing: Metallurgical Industry Press, 2002

    葉大倫. 實用無機物熱力學數據手冊. 2版. 北京:冶金工業出版社, 2002
  • 加載中
圖(8) / 表(3)
計量
  • 文章訪問數:  220
  • HTML全文瀏覽量:  21
  • PDF下載量:  30
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-24
  • 網絡出版日期:  2023-03-16

目錄

    /

    返回文章
    返回