Comparative of different modifiers on the crystallization properties of glass–ceramics derived from silicon manganese slag
-
摘要: 以硅錳渣為主要原料,分別添加高硅、高鐵和含鉻的改質劑硅石、鐵鱗和鉻鐵渣,采用Petrurgic一步法制備了微晶玻璃,對微晶玻璃樣品進行X射線衍射(XRD) 、差示掃描量熱分析(DSC)、掃描電子顯微鏡(SEM-EDS)等測試和分析,討論了添加不同改質劑對硅錳渣微晶玻璃礦相和性能的影響規律. 研究表明: 將改質熔渣冷卻至析晶溫度保溫和700 ℃退火后,獲得滿足天然花崗巖石材對性能要求的微晶玻璃. 相對于原硅錳渣,改質熔渣的析晶性能都獲得了顯著提升,其中鐵鱗和鉻鐵渣更有利于促進粒度為0.2~0.5 μm粒狀或短棒狀輝石晶體形成,這些晶體為固溶了Fe、Mn離子的普通輝石(Ca(Mg,Fe,Al)(Si,Al)2O6)和鈣錳輝石(CaMnSi2O6)等. 添加改質劑均改變了硅錳渣中Mn離子的賦存形態,原渣中Mn離子主要以玻璃相和硫化錳形式存在,改質后樣品中的錳離子主要賦存于鈣錳輝石中.Abstract: Direct casting of smelting slag into glass–ceramic is considered as an efficient way to simultaneously utilize “slag” and “heat” to prepare high value-added materials, owing to which has become a research hot spot. In this paper, silico–manganese slag was used as the main raw material, and silica, iron scale, and ferrochromium slag respectively as high-silicon, high-iron and chromium-containing modifiers. Furthermore, glass–ceramics were prepared using the Petrurgic one-step method. The Petrurgic one-step method is a heat treatment method for preparing glass–ceramic using controlled crystallization during slag cooling process. Using X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM-EDS) and other tests, the effect of adding different modifiers on the mineral phase and properties of silicon–manganese slag glass–ceramics were discussed. Furthermore, the feasibility of preparing glass–ceramics by online modification of silicon–manganese slag was discussed based on thermal balance calculation and analysis. The research revealed that by cooling the modified slag to the crystallization temperature and annealing at 700 ℃, glass–ceramics that meet the performance requirements of natural granite can be obtained. Herein, the optimal sample of glass–ceramic had a flexural resistance of 74.67 MPa, bulk density of 2.95 g cm?3, and water absorption rate of 0.08%. The crystallization performance of the modified slag was considerably improved compared with that of the original silico–manganese slag, and the iron scale and ferrochromium slag were more conducive to promoting the formation of granular or short rod-shaped pyroxene crystals with a particle size of 0.2–0.5 μm. The obtained products have pyroxene group crystals, such as augite (Ca(Mg,Fe,Al)(Si,Al)2O6) and johannsenite (CaMnSi2O6) with a solid solution of Fe and Mn ions. The addition of modifiers altered the occurrence form of Mn ions in the silico–manganese slag. Mn ions in the original slag were mostly found in the form of glass phase and manganese sulfide, whereas Mn ions in the modified samples were mostly found in johannsenite. Microcracks appeared especially in the samples modified with silica after heat treatment, and the crystal density of pyroxene was greater than that of the glass matrix, and volume shrinkage caused by its precipitation was one of the causes of crack formation. During the modification process, it was observed that when 10% silica and iron scale were added as modifiers, the sensible heat of slag was greater than the melting endothermic heat of the modifier, and no additional heat was required in the modification process. Furthermore, when ferrochromium slag was used as a modifier, the glass–ceramic was prepared by the hot-state mixing method between silico–manganese slag and ferrochromium slag.
-
Key words:
- silicon manganese slag /
- glass–ceramic /
- modification /
- crystallization /
- manganese ions consolidation
-
表 1 原料的化學組成(質量分數)
Table 1. Chemical composition of the raw material
% Raw material composition CaO SiO2 Al2O3 MgO MnO Fe2O3* K2O P2O5 TiO2 Cr2O3 SO3* BaO Other Silicon manganese slag 27.27 38.40 13.24 3.60 7.92 2.27 1.60 0.41 0.25 0.26 1.45 2.49 0.84 Silica 3.50 85.40 2.58 1.05 2.92 2.14 1.02 0.42 0.11 0.20 — — 0.66 Iron scale 0.40 3.46 1.04 — 0.54 87.62 — 0.48 — 5.08 0.79 — 0.59 Ferrochrome slag 3.30 28.78 24.16 27.08 0.42 4.21 0.17 0.38 0.80 8.00 2.25 — 0.45 Notes:“*” For only the elements contents were detected by XRF, the results of all Fe and S elements were presented here in the form of Fe2O3 and SO3. 表 2 配合料的主要化學組成(質量分數)
Table 2. Chemical composition of the formula
% Sample CaO SiO2 Al2O3 MgO MnO Fe2O3 K2O P2O5 TiO2 Cr2O3 SO3 BaO Other S1 27.27 38.40 13.24 3.60 7.92 2.27 1.60 0.41 0.25 0.26 1.45 2.49 0.84 S2 24.89 43.10 12.17 3.35 7.42 2.26 1.54 0.41 0.24 0.25 1.31 2.24 0.82 S3 24.58 34.91 12.02 3.24 7.18 10.81 1.44 0.42 0.22 0.74 1.39 2.24 0.81 S4 24.87 37.44 14.33 5.95 7.17 2.46 1.46 0.41 0.31 1.03 1.53 2.24 0.80 表 3 熔渣改質具有的顯熱和改質劑熔解需要的熱量對比
Table 3. Comparison of sensible heat of slag modification and required heat of melting modifier
Sample Slag appreciable heat, Qs /J Modifier absorbs heat, Qen/J Silicon–manganese slag (90%, mass fraction)+silica (10%, mass fraction)(S2) 31356 15203 Silicon–manganese slag (90%, mass fraction)+iron scale (10%, mass fraction)(S3) 31356 12495 259luxu-164 -
參考文獻
[1] Li X, Peng F. Analysis of the current status and development trend of China’s ferroalloy industry. Metallur Economic Manag, 2013(5): 3 doi: 10.3969/j.issn.1002-1779.2013.05.007李曉, 彭鋒. 我國鐵合金行業現狀及發展趨勢分析. 冶金經濟與管理, 2013(5):3 doi: 10.3969/j.issn.1002-1779.2013.05.007 [2] Li Y, Liu X M, Zhang Z Q. Metallurgical Solid Waste Material Utilization. Beijing: China Building Materials Industry Press, 2022李宇, 劉曉明, 張增起. 冶金固廢材料化利用. 北京:中國建材工業出版社, 2022 [3] Xin X, Tan Z X, Zhao J X, et al. Heat treatment process optimization of microcrystalline cast stone from silico–manganese slag by one-step preparation. J Chin Ceram Soc, 2022, 50(6): 1677 doi: 10.14062/j.issn.0454-5648.20210843辛鑫, 譚澤馨, 趙俊學, 等. 硅錳渣一步法制備微晶鑄石的熱處理工藝及性能. 硅酸鹽學報, 2022, 50(6):1677 doi: 10.14062/j.issn.0454-5648.20210843 [4] Dai W, Shu L. Process Technology of Ferroalloy Production. Beijing: Metallurgical Industry Press, 2015戴維, 舒莉. 鐵合金工程技術. 北京:冶金工業出版社, 2015 [5] Nath S K, Kumar S. Evaluation of the suitability of ground granulated silico–manganese slag in Portland slag cement. Constr Build Mater, 2016, 125: 127 doi: 10.1016/j.conbuildmat.2016.08.025 [6] Patil A V, Pande A M. Behaviour of silico manganese slag manufactured aggregate as material for road and rail track construction. Adv Mater Res, 2011, 255-260: 3258 doi: 10.4028/www.scientific.net/AMR.255-260.3258 [7] Choi H B, Kim J M. Properties of silicon manganese slag as an aggregate for concrete depending on cooling conditions. J Mater Cycles Waste Manag, 2020, 22: 1067 doi: 10.1007/s10163-020-01003-8 [8] Li J Q, Mu Y T. Discussion of the feasibility about cinder wool prepared by ferromanganesesilicon slag. Ferro-Alloys, 2016, 47(1): 35 doi: 10.16122/j.cnki.issn1001-1943.2016.01.009李俊強, 穆宇同. 淺談利用錳硅渣制備礦渣棉制品的可行性. 鐵合金, 2016, 47(1):35 doi: 10.16122/j.cnki.issn1001-1943.2016.01.009 [9] Miao X W, Bai Z T, Qiu G B, et al. Preparation of transparent Mn-doped CaF2 glass–ceramics from silicon–manganese slag: Dependence of colour-controllable change on slag addition and crystallization behavior. J Eur Ceram Soc, 2020, 40(8): 3249 doi: 10.1016/j.jeurceramsoc.2020.02.029 [10] Khater G A. The use of Saudi slag for the production of glass–ceramic materials. Ceram Int, 2002, 28(1): 59 doi: 10.1016/S0272-8842(01)00058-X [11] Yang L, Zhang H B, Cao J X. Preparation of ecology water penetrable brick using silicon manganese slag. New Build Mater, 2007, 34(6): 27 doi: 10.3969/j.issn.1001-702X.2007.06.010楊林, 張洪波, 曹建新. 硅錳渣制生態滲水磚. 新型建筑材料, 2007, 34(6):27 doi: 10.3969/j.issn.1001-702X.2007.06.010 [12] Rawlings R D, Wu J P, Boccaccini A R. Glass–ceramics: Their production from wastes—a review. J Mater Sci, 2006, 41(3): 733 doi: 10.1007/s10853-006-6554-3 [13] Zhao X Y, Yang T, Yang J C, et al. Effects of temperature regime on structure and properties of copper slag glass–ceramics by one-step method. Nonferrous Met Sci Eng, 2023, 14(1): 8 doi: 10.13264/j.cnki.ysjskx.2023.01.012趙新宇, 楊天, 楊金成, 等. 熱制度對銅渣微晶玻璃結構和性能的影響規律. 有色金屬科學與工程, 2023, 14(1):8 doi: 10.13264/j.cnki.ysjskx.2023.01.012 [14] Mei S X, Pei K P, He F, et al. Structure and properties of molten blast furnace slag glass–ceramics. J Synth Cryst, 2017, 46(4): 698 doi: 10.3969/j.issn.1000-985X.2017.04.023梅書霞, 裴可鵬, 何峰, 等. 高爐熔渣微晶玻璃的結構與性能研究. 人工晶體學報, 2017, 46(4):698 doi: 10.3969/j.issn.1000-985X.2017.04.023 [15] Shu Z, Zhou J, Wang Y X. The preparation of cast stone from thermal phosphorous slag liquid. Acta Petrol Mineral, 2008, 27(2): 152 doi: 10.3969/j.issn.1000-6524.2008.02.007舒杼, 周俊, 王焰新. 利用高溫磷渣液直接制備微晶鑄石的模擬研究. 巖石礦物學雜志, 2008, 27(2):152 doi: 10.3969/j.issn.1000-6524.2008.02.007 [16] Jilin Ferroalloy Co. , Ltd. , Institute of Geology, Chinese Academy of Sciences. Direct production of cast stone from hot slag of ferroalloy. Nonferrous Met, 1973(S1): 1吉林鐵合金廠, 中國科學院地質研究所. 利用鐵合金的熾熱爐渣直接生產鑄石. 有色金屬, 1973(增1):1 [17] Liu X P, Pan G F, Zhao Y F, et al. Current status of Mn pollution in groundwater and progress in treatment technology. Mod Chem Res, 2021(23): 89 doi: 10.3969/j.issn.1672-8114.2021.23.030劉學鵬, 潘高峰, 趙遙菲, 等. 地下水中錳污染現狀及治理技術進展. 當代化工研究, 2021(23):89 doi: 10.3969/j.issn.1672-8114.2021.23.030 [18] Mudersbach D, Drissen P, Motz H. Improved slag qualities by liquid slag treatment // The 2nd International Slag Valorization Symposium. Leuven, 2011: 299 [19] Wang W, Liao W, Wu X R, et al. Study on occurrence and concentrating behavior of chromium in stainless steel slag. Multipurp Util Miner Resour, 2012(3): 42 doi: 10.3969/j.issn.1000-6532.2012.03.011王偉, 廖偉, 武杏榮, 等. 不銹鋼渣中鉻的賦存狀態與鉻的富集行為研究. 礦產綜合利用, 2012(3):42 doi: 10.3969/j.issn.1000-6532.2012.03.011 [20] Krausova K, Gautron L, Karnis A, et al. Glass ceramics and mineral materials for the immobilization of lead and cadmium. Ceram Int, 2016, 42(7): 8779 doi: 10.1016/j.ceramint.2016.02.119 [21] Cao L H, Zhao Q. Influence of Al2O3 modification on enrichment behavior of chromium in stainless steel slag. Steelmaking, 2019, 35(5): 75操龍虎, 趙青. Al2O3對不銹鋼渣中鉻富集行為的影響機制. 煉鋼, 2019, 35(5):75 [22] Dai W B. Study on Steel Slag Hot Modification Process, Equipment and Preparation for Glass–Ceramics Manufacturing [Dissertation]. Beijing: University of Science and Technology Beijing, 2016代文彬. 鋼渣熱態改質的工藝、裝備及制備微晶玻璃的研究[學術論文]. 北京:北京科技大學, 2016 [23] Peng R X, Han H, Lin H J, et al. Effect of MgO content on structure and properties of glass-ceramics. Bull Chin Ceram Soc, 2021, 40(10): 3497 doi: 10.3969/j.issn.1001-1625.2021.10.gsytb202110043彭瑞欣, 韓韓, 林鴻劍, 等. MgO含量對微晶玻璃結構及性能的影響. 硅酸鹽通報, 2021, 40(10):3497 doi: 10.3969/j.issn.1001-1625.2021.10.gsytb202110043 [24] Yang Z J, Li Y, Cang D Q, et al. Influence of Al2O3 content on structure and properties of glass–ceramics prepared with steel slag extracted iron and fly ash. Chin J Environ Eng, 2012, 6(12): 4631楊志杰, 李宇, 蒼大強, 等. Al2O3含量對提鐵后的鋼渣及粉煤灰微晶玻璃結構與性能的影響. 環境工程學報, 2012, 6(12):4631 [25] Wang R X, Wang Y C, Cao P F, et al. Optimization of preparation of glass–ceramics nucleating agent by blast furnace slag and fly ash. China Ceram, 2020, 56(11): 44 doi: 10.16521/j.cnki.issn.1001-9642.2020.11.007王瑞鑫, 王藝慈, 曹鵬飛, 等. 高爐渣和粉煤灰制備微晶玻璃晶核劑的優化. 中國陶瓷, 2020, 56(11):44 doi: 10.16521/j.cnki.issn.1001-9642.2020.11.007 [26] Wang H Y. Effect of Temperature Distribution on Crystal Phase and Properties of Molten Slag Cast Stone During Cooling [Dissertation]. Beijing: University of Science and Technology Beijing, 2018王宏宇. 熔渣鑄石降溫過程中溫度分布對晶相和性能的影響[學術論文]. 北京:北京科技大學, 2018 [27] Yu Q C, Yan C P, Deng Y, et al. Effect of Fe2O3 on non-isothermal crystallization of CaO–MgO–Al2O3–SiO2 glass. Trans Nonferrous Met Soc China, 2015, 25(7): 2279 doi: 10.1016/S1003-6326(15)63842-0 [28] Zhao M Z, Cao J W, Wang Z, et al. Insight into the dual effect of Fe2O3 addition on the crystallization of CaO–MgO–Al2O3–SiO2 glass–ceramics. J Non Cryst Solids, 2019, 513: 144 doi: 10.1016/j.jnoncrysol.2019.03.021 [29] Li B, Wang S L, Fang Y. Effect of Cr2O3 addition on crystallization, microstructure and properties of Li2O–Al2O3–SiO2 glass–ceramics. J Alloys Compd, 2017, 693: 9 doi: 10.1016/j.jallcom.2016.09.043 [30] Zhang S, Zhang Y L, Qu Z M. Effects of soluble Cr2O3 doping on the glass structure, microstructure, crystallization behavior, and properties of MgO–Al2O3–SiO2 sapphirine glass ceramics. Mater Chem Phys, 2020, 252: 123115 doi: 10.1016/j.matchemphys.2020.123115 [31] Ye D N. Cast Stone Research: Proceedings. Beijing: Science Press, 1978葉大年. 鑄石研究:論文集. 北京:科學出版社, 1978 [32] Khater G A, Abdel-Motelib A, El Manawi A W, et al. Glass–ceramics materials from basaltic rocks and some industrial waste. J Non Cryst Solids, 2012, 358(8): 1128 doi: 10.1016/j.jnoncrysol.2012.02.010 [33] Lu X, Li Y, Ma S, et al. Thermal equilibrium analysis and experiment of molten slag modification by use of its sensible heat. Chin J Eng, 2016, 38(10): 1386盧翔, 李宇, 馬帥, 等. 利用顯熱對熔渣進行直接改質的熱平衡分析及試驗驗證. 工程科學學報, 2016, 38(10):1386 [34] Li B W, Du Y S, Zhang X F, et al. Effects of iron oxide on the crystallization kinetics of Baiyunebo tailing glass–ceramics. Trans Indian Ceram Soc, 2013, 72(2): 119 doi: 10.1080/0371750X.2013.795718 [35] Zheng X Z, Li D Z, Shen B M. A discussion about the conditions for the synthesis of clinopyroxenes in the nonequilibrium. Chin J Geol, 1973, 8(4): 307鄭學正, 李達周, 沈步明. 不平衡條件下單斜輝石形成的一些探討. 地質科學, 1973, 8(4):307 [36] Ye D L. Handbook of Thermodynamic Data for Practical Inorganic Compounds. 2nd Ed. Beijing: Metallurgical Industry Press, 2002葉大倫. 實用無機物熱力學數據手冊. 2版. 北京:冶金工業出版社, 2002 -