Rock breaking mechanism and the application of medium-deep hole–in-hole segmented blasting in rock roadway using digital electronic detonators
-
摘要: 巖巷掘進中“速度的關鍵在掏槽”,針對目前掏槽爆破中破碎巖石難以拋擲、單循環進尺小、大塊率高等問題,提出了中深孔–孔內分段爆破技術. 采用數學建模,推導了中深孔–孔內分段爆破巖石拋擲所受的動、阻力公式;利用LS-DYNA進行數值模擬,分析了中深孔–孔內分段爆破應力波的傳播規律,并比較了不同分段比例下有效應力變化情況;將中深孔–孔內分段爆破應用于現場,對比了單循環進尺、炮孔利用率、孔痕率及大塊率等爆破效果指標. 結果表明,中深孔–孔內分段爆破巖石拋擲所受的阻力比普通楔形掏槽爆破的阻力小,動力作用時間短,能量損失少,更易爆破成腔. 提出了能夠使破碎巖石完全拋擲出腔的措施,并初步確定孔內分段的最優比例為0.6. 中深孔–孔內分段爆破增加了單循環進尺,提高了工作效率,具有良好的經濟社會效益.Abstract: “Cutting is the key to speed” in rock roadway excavation. With the aim of addressing the challenges related to broken rock disposal, low single-cycle penetration, and high block rate in the conventional straight hole and diagonal hole excavation blasting, the method of medium-deep holein-hole segmented blasting is proposed herein. The mathematical relations for the force and resistance required in the process of rock crushing and ejection in the groove of medium-deep hole-in-hole segmented blasting, as well as that for the expected value range of the key parameters of the cutting groove, were determined. LS-DYNA was used to numerically simulate the process of medium-deep hole-in-hole and ordinary wedge cut blasting. The nature of stress wave propagation during medium-deep hole-in-hole segmental blasting and the stress characteristics of the rock at the bottom of the hole were analyzed. Furthermore, the variation characteristics of the stress wave intensity were compared for different segmental proportions, and the optimal segmental proportions were determined. The results of theoretical analysis and numerical simulation were applied to the excavation site of the rock roadway, and the blasting effect indices, such as singlecycle footage, hole utilization rate, eye mark rate, and block rate, of the medium-deep hole-in-hole segmented blasting and the ordinary wedge blasting schemes were compared. The results showed that rock can be ejected from the cavity when the dynamic force is greater than or equal to the resistance during the rock crushing and ejection process and that the resistance to rock ejection in the medium-deep holeinhole segmented blasting is less than that in ordinary wedge cut blasting, and it is easier to blast into the cavity. Best practices for achieving the complete ejection of broken rocks from the cavity are proposed, and theoretical support for determining the parameters, such as the depth of the hole, is provided. As compared to ordinary wedge cut blasting, producing a large blasting cavity through medium-deep hole-in-hole segmented blasting is easier, which is more favorable for subsequent blasting. The optimal ratio of the hole-in-hole segmented blasting was initially determined to be 0.6. Medium and deep hole-inhole segmented blasting increases the single-cycle footage, improves the utilization rate of the hole, reduces the working time, reduces construction cost, and has excellent economic and socialadvantages.
-
圖 9 中深孔–孔內分段爆破應力波強度變化特征(單位:1010 Pa). (a) 20 μs; (b) 99 μs; (c) 299 μs; (d) 599 μs; (e) 799 μs; (f) 999 μs
Figure 9. Variation characteristics of the stress wave intensity during medium deep hole-in-hole segmented blasting (Unit: 1010 Pa): (a) 20 μs; (b) 99 μs; (c) 299 μs; (d) 599 μs; (e) 799 μs; (f) 999 μs
表 1 爆破所用炸藥參數
Table 1. Explosion parameters
Density/(g·cm?3) Detonation velocity/(m·s?1) Detonation pressure/GPa JWL state equation parameters A/GPa B/GPa G1 G2 E0/GPa 1.6 3800 2.55 214.4 0.185 4.15 0.95 4.19 表 2 巖石模型部分力學參數
Table 2. Mechanical parameters of the rock model
Density/(g·cm?3) Elastic modulus/GPa Dynamic compressive strength/MPa Dynamic tensile strength/MPa Poisson ratio 2.16 38.5 128 16.3 0.27 表 3 炮泥模型部分力學參數
Table 3. Mechanical parameters of the gun-clay model
Density/(g·cm?3) Shear modulus/MPa Cohesion/MPa Angle of internal friction/(°) Poisson ratio 1.35 30 0.29 0.62 0.29 表 4 4種新方案的部分主要參數
Table 4. Key parameters of the four new schemes
Scheme (Cut hole length/depth)/(mm/mm) Other hole depth/mm Angle between cutting slot
and free surface/(°)Total number of holes Total explosive used/kg Explosive specific consumption/(kg·m?3) New scheme 1 2350/2300 2150 80 110 97.4 2.21 New scheme 2 2500/2450 2250 80 119 90.2 1.92 New scheme 3 2600/2550 2250 80 108 97.4 2.10 New scheme 4 3000/2950 2600 79 126 144.2 2.39 表 5 原方案和新方案爆破效果對比
Table 5. Comparison of the blasting effects of the original and new schemes
Scheme Single loop footage/m Hole utilization/% Hole mark ratio/% Bulk ratio/% Original scheme 1.5 83.3 84.1 9.7 New scheme 1 2.0 93 90.9 2.1 New scheme 2 2.13 94.7 90.1 2.0 New scheme 3 2.10 93.3 95.4 1.7 New scheme 4 2.45 94.2 94.8 1.7 表 6 新方案現場爆破情況
Table 6. Field blasting of the new schemes
Half-hole marks Explosive reactor Section forming New scheme 1 New scheme 2 New scheme 3 New scheme 4 259luxu-164 -
參考文獻
[1] Yang R S. Present status and outlook on safety and high efficient heading technology of mine rock roadway in China. Coal Sci Technol, 2013, 41(9): 18楊仁樹. 我國煤礦巖巷安全高效掘進技術現狀與展望. 煤炭科學技術, 2013, 41(9):18 [2] Gong M, Wen B, Wang H. Influences of cut parameters on blasting effect in rock roadway of coal mine. Explos Shock Waves, 2015, 35(4): 576龔敏, 文斌, 王華. 掏槽參數對煤礦巖巷爆破效果的影響. 爆炸與沖擊, 2015, 35(4):576 [3] Wang W L. Drilling Blasting. Beijing: China Coal Industry Publishing House, 1984王文龍. 鉆眼爆破. 北京:煤炭工業出版社, 1984 [4] Yang R S, Zhang Z R, Yang L Y, et al. Cumulative blasting experiment study of slotted cartridge based on hard-rock rapid driving technology. Chin J Rock Mech Eng, 2013, 32(2): 317楊仁樹, 張召冉, 楊立云, 等. 基于硬巖快掘技術的切縫藥包聚能爆破試驗研究. 巖石力學與工程學報, 2013, 32(2):317 [5] Yuan W H, Ma Q Y, Huang W. Model experiment and analysis of wedge-shaped cutting millisecond blasting. Chin J Rock Mech Eng, 2012, 31(S1): 3352袁文華, 馬芹永, 黃偉. 楔形掏槽微差爆破模型試驗與分析. 巖石力學與工程學報, 2012, 31(S1):3352 [6] Li T C, Liu H Q. Experimental study of blasting technology of dip roadway excavation in coal mine. Rock Soil Mech, 2012, 33(1): 35李廷春, 劉洪強. 煤礦下山巷道爆破掘進技術試驗研究. 巖土力學, 2012, 33(1):35 [7] Zhang Q, Yang Y Q, Jin Q K, et al. Study of some aspects of mechanismin straight cut blasting. J China Coal Soc, 1997(3): 62張奇, 楊永琦, 金乾坤, 等. 直眼掏槽爆破機理若干基本問題的研究. 煤炭學報, 1997(3):62 [8] Zhang Z R, Chen H Y, Jiao W G, et al. Rock breaking mechanism and blasting parameters of straight-hole cutting with empty-hole. J China Coal Soc, 2020, 45(S2): 791張召冉, 陳華義, 矯偉剛, 等. 含空孔直眼掏槽空孔效應及爆破參數研究. 煤炭學報, 2020, 45(S2):791 [9] Shan R L, Zhou J J, Huang B L, et al. Analysis on slotting blasting influence factors of mine roadway. Coal Sci Technol, 2010, 38(2): 25單仁亮, 周紀軍, 黃寶龍, 等. 巷道掏槽爆破影響因素分析. 煤炭科學技術, 2010, 38(2):25 [10] Hu K L, Yang R S, Xu X F, et al. Blasting test and study on driving of deep-seated rock tunnels of coal mines. J Liaoning Tech Univ, 2007, 136(6): 856胡坤倫, 楊仁樹, 徐曉峰, 等. 煤礦深部巖巷掘進爆破試驗研究. 遼寧工程技術大學學報, 2007, 136(6):856 [11] Zong Q, Liu J H. Application research on cutting technology of mid-deep hole blasting in coal mine rock tunnel. Blasting, 2010, 27(4): 35宗琦, 劉菁華. 煤礦巖石巷道中深孔爆破掏槽技術應用研究. 爆破, 2010, 27(4):35 [12] Wang H J, Yang R S, Li Q. Analysis of blasting mechanism for deep rock tunneling and blasting parameters design. J China Coal Soc, 2007, 151(4): 373王漢軍, 楊仁樹, 李清. 深部巖巷爆破機理分析和爆破參數設計. 煤炭學報, 2007, 151(4):373 [13] Chen S H, Wei H X, Xue A Z. Testing study on middle deep cut-hole blasting in hard rock tunnel. Chin J Rock Mech Eng, 2007, 192(S1): 3498陳士海, 魏海霞, 薛愛芝. 堅硬巖石巷道中深孔掏槽爆破試驗研究. 巖石力學與工程學報, 2007, 192(S1):3498 [14] Gong M, Wang C H, Liang L X, et al. Function analysis and confirming method of key blasting parameters for excavating in hard rock. J China Coal Soc, 2015, 40(7): 1526龔敏, 王燦華, 梁立勛, 等. 硬巖掘進中主要爆破參數的確定與作用. 煤炭學報, 2015, 40(7):1526 [15] Yang G L, Jiang L L, Yang R S. Investigation of cut blasting with duplex wedge deep holes. J China Univ Min Technol, 2013, 42(5): 755楊國梁, 姜琳琳, 楊仁樹. 復式楔形深孔掏槽爆破研究. 中國礦業大學學報, 2013, 42(5):755 [16] Hu J H, Yang C, Zhou K P, et al. Temporal-spatial evolution and application of blasting cavity of single wedge cutting. J Cent South Univ (Sci Technol), 2017, 48(12): 3309胡建華, 楊春, 周科平, 等. 單楔形掏槽爆破腔體時空演化及應用. 中南大學學報(自然科學版), 2017, 48(12):3309 [17] Yu Y Q, Wang C, Chu H B, et al. Duplex wedge cutting on mid-depth borehole tunneling blasting in hard rock. Blasting, 2013, 30(2): 95余永強, 王超, 褚懷保, 等. 硬巖巷道中深孔爆破掘進復楔形掏槽試驗研究. 爆破, 2013, 30(2):95 [18] Dai J. Calculation of radii of the broken and cracked areas in rock by a long charge explosion. J Liaoning Tech Univ (Nat Sci Ed), 2001, 20(2): 144戴俊. 柱狀裝藥爆破的巖石壓碎圈與裂隙圈計算. 遼寧工程技術大學學報(自然科學版), 2001, 20(2):144 [19] Zhang Q. Smash districts and expanding of cavities in rock blasting. Explos Shock Waves, 1990(1): 68張奇. 巖石爆破的粉碎區及其空腔膨脹. 爆炸與沖擊, 1990(1):68 [20] Zong Q. Calculation of radius of stress wave rupture zone in rock explosion. Blasting, 1994(2): 15宗琦. 巖石內爆炸應力波破裂區半徑的計算. 爆破, 1994(2):15 [21] Zhang Z R, Yang R S. Multi-step cutting technology and its application in rock roadways. Chin J Rock Mech Eng, 2019, 38(3): 551張召冉, 楊仁樹. 巖石巷道“多階段”掏槽技術及應用研究. 巖石力學與工程學報, 2019, 38(3):551 [22] Liu H Y. Fully coupled model and engineering application for deformation and pressure-relief gas flow of remote coal and rock mass due to mining. J China Coal Soc, 2011, 36(7): 1243 doi: 10.13225/j.cnki.jccs.2011.07.023劉洪永. 遠程采動煤巖體變形與卸壓瓦斯流動氣固耦合動力學模型及其應用研究. 煤炭學報, 2011, 36(7):1243 doi: 10.13225/j.cnki.jccs.2011.07.023 [23] Du J L, Luo Q, Zong Q. Analysis on preliminary shock pressure on borehole of air-de-coupling charging. J Xi’an Univ Sci Technol, 2005(3): 306 doi: 10.3969/j.issn.1672-9315.2005.03.009杜俊林, 羅強, 宗琦. 空氣不耦合裝藥爆破孔壁沖擊壓力分析. 西安科技大學學報, 2005(3):306 doi: 10.3969/j.issn.1672-9315.2005.03.009 [24] Wang Y B, Wen Z J, Liu G Q, et al. Explosion propagation and characteristics of rock damage in decoupled charge blasting based on computed tomography scanning. Int J Rock Mech Min Sci, 2020, 136: 104540 doi: 10.1016/j.ijrmms.2020.104540 [25] Wang H B, Zong Q, Zhao Y C. Numerical analysis and application of large diameter cavity parallel cut blasting stress field in vertical shaft. Chin J Rock Mech Eng, 2015, 34(S1): 3223 doi: 10.13722/j.cnki.jrme.2014.0296汪海波, 宗琦, 趙要才. 立井大直徑中空孔直眼掏槽爆炸應力場數值模擬分析與應用. 巖石力學與工程學報, 2015, 34(S1):3223 doi: 10.13722/j.cnki.jrme.2014.0296 -