<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">

電解水制氫技術及大電流析氧反應研究與展望

Research and perspectives on electrocatalytic water splitting and large current density oxygen evolution reaction

  • 摘要: 當今時代對可持續能源的迫切需求推動了可再生能源技術的不斷改進,其中氫能因其清潔環保且能量密度高而受到了科研人員廣泛關注。電解水制氫作為一種綠色環保的制氫方式,其陽極析氧反應(OER)的高能耗限制了電解水制氫技術的廣泛應用。近年來,高性能的OER催化劑的研究得到了長足發展,但催化劑的測試范圍小,且很少能夠連續工作數百小時,遠遠不能滿足實際應用的需求。為了更好的適用于工業應用,OER催化劑需要滿足更苛刻的測試環境,如在低過電位下提供大電流密度、在強氣體排放過程中維持穩定性和耐久性,因此開發在大電流密度下的高活性OER催化劑是當前工作的重中之重。結合大電流OER催化劑的研究進展,本文首先提出氫能是目前最有前途的能源之一,并調研了大電流密度下電催化劑的研究現狀。其次通過對OER機理進行分析,發現采取元素摻雜、界面工程、缺陷工程和形貌工程等措施可以提升催化劑在大電流密度下的活性。最后,對大電流析氧領域在工業發展中現階段存在的挑戰及未來發展方向進行了展望。

     

    Abstract: With the consumption of fossil fuels and the deterioration of the ecological environment, the need for developing new, efficient, and sustainable sources of clean energy is urgent. The importance of “green hydrogen” in electrolytic water splitting has attracted worldwide attention not only from the scientific community but also from governments and industries. Hydrogen energy is considered an ideal alternative to fossil fuels because of its high energy density, environmental friendliness, and low pollution level. Hydrogen production from renewable energy sources using the electrolysis of water is the lowest carbon emission process of the many current hydrogen source options. The electrolytic water reaction is subdivided into two half-reactions, namely, the hydrogen evolution reaction (HER) at the cathode and the oxygen evolution reaction (OER) at the anode. The HER is a relatively simple two-electron reaction. Compared to the HER at the cathode, the OER at the anode is a four-electron transfer process with slower kinetics and higher energy barriers. It is the decisive step in the electrolytic water reaction, receiving considerable attention from scholars. Recently, considerable developments in the research of high-performance electrolytic water catalysts have been reported as successful; however, the catalysts have been tested on a very small scale, usually under laboratory conditions, and can rarely operate continuously for hundreds of hours, far from meeting the needs of practical applications. Industrial-level electrocatalytic hydrogen production requires catalysts that are highly active, cost-effective, and stable at high current densities; thus, a great deal of work has explored efficient and highly durable active electrocatalysts to overcome the kinetic barriers that inhibit the reaction, particularly for the complex four-electron reaction of the OER. In summary, catalysts for oxygen precipitation reactions at high current densities will be the focus of future research. This paper reviews the current status of hydrogen energy development and various hydrogen production methods at home and abroad, focusing on an analysis of electrolytic water hydrogen production technology and proposing the requirements under large-scale industrial applications. Studying the OER mechanism has revealed that the activity of catalysts at high current densities can be enhanced by the following strategies: heteroatom doping, defect engineering, interface engineering, in situ self-growth, etc. Finally, the challenges in the field of high-current oxygen analysis at this stage of industrial development and the future direction of development are presented.

     

/

返回文章
返回
<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
259luxu-164