-
摘要: 針對燒結半干法脫硫灰中CaSO3在不同反應條件下干熱氧化的變化規律,研究了溫度、氣體中O2含量與流速、鈣類化合物、鐵氧化物(Fe2O3)、水蒸汽含量與流速等對CaSO3氧化的影響. 結果表明:反應遵循阿累尼烏斯方程,在空氣氛圍,升溫速度為10 ℃·min–1的條件下,450 ℃、75 mL·min–1的氣體流速為經濟性干熱氧化的最佳工藝條件,水汽對CaSO3氧化反應具有兩面性;鈣的氧化物對CaSO3氧化反應通過抑制
$ {\text{O}}_{\text{2}}^{{-}} $ 、$ \text{S}{\text{O}}_{\text{3}}^{{-}} $ 自由基的生成而抑制反應進行,3種鈣類氧化物對CaSO3氧化抑制作用從弱到強為:CaCO3<Ca(OH)2<CaCl2;Fe2O3對CaSO3的催化作用隨溫度、濃度變化而改變,溫度小于450 ℃,Fe2O3質量分數大于0.2%時,對氧化反應起到一定催化作用,溫度大于450 ℃及催化劑質量分數低于0.2%時,由溫度占主導地位. 微觀形貌表征顯示隨著CaSO3被氧化為CaSO4,形貌由團簇狀轉變為柱狀,CaCl2即抑制氧化反應也抑制CaSO4的晶型,Fe2O3促進CaSO4結晶的形成. 實驗室升溫較快,溫度大于400 ℃時,脫硫灰5 min內部溫度大于500 ℃,此時,CaSO3轉化率超過85%,中試升溫較慢,沒有這一特征;吉布斯自由能計算結果表明最有可能發生的是CaSO3氧化反應,600 ℃以下鈣的氧化分解反應不可能發生;CaSO3氧化過程中活性位點的數量與溫度有關,當溫度在623~723 K時,該反應為一級反應,當溫度大于723 K時,反應在5 min左右迅速完成,無法確定其反應級數.Abstract: Considering the variation in dry heat oxidation of CaSO3 in sintering semidry desulfurization ash under different reaction conditions, the effects of temperature, O2 content and flow rate in gas, calcium compounds, iron oxide (Fe2O3), water vapor content, and flow rate on CaSO3 oxidation were evaluated. It was determined that the reaction adheres to the Arrhenius equation. The oxidation rate of CaSO3 increases from 380 ℃. Moreover, at 450 ℃, the oxidation rate of CaSO3 exceeds 90%, and at 550 ℃, it is completely oxidized (98.2%). Under the condition of 10 ℃·min?1 in the air atmosphere, the gas flow rate of 450 ℃ and 75 mL·min?1 is the optimal process condition for economic dry heat oxidation. Water vapor is present on both sides of the CaSO3 oxidation reaction. Moreover, the oxidation of CaSO3 by calcium oxides was inhibited by inhibiting the generation of$ {\text{O}}_{\text{2}}^{-}\;\text{and }\;{\text{SO}}_{\text{3}}^{-} $ free radicals. The order of the inhibition of CaSO3 oxidation by the three calcium oxides from weak to strong was CaCO3 < Ca(OH)2 < CaCl2. The catalytic effect of Fe2O3 on the oxidation of CaSO3 varies with temperature and concentration. When the temperature is less than 450 ℃ and the weight percentage of Fe2O3 is greater than 0.2%, it plays a certain catalytic role in the oxidation reaction. The doping of Fe2O3 accelerates the formation of$ {\text{O}}_{\text{2}}^{-} $ and$ \text{S}{\text{O}}_{\text{3}}^{-} $ free radicals. When the temperature exceeds 450 ℃ and the catalyst concentration is less than 0.2%, the catalyst concentration has no effect on the reaction process, and the temperature takes precedence. The microscopy analysis reveals that with the oxidation of CaSO3 to CaSO4, the morphology shifts from cluster to column. Furthermore, CaCl2 inhibits not only the oxidation reaction but also the crystal form of CaSO4. Fe2O3 aids the formation of CaSO4 crystals. When the temperature exceeds 400 ℃, the internal temperature of desulfurized ash is higher than 500 ℃ for 5 min. Simultaneously, the conversion rate of CaSO3 is greater than 85%, and the pilot test temperature is slower, which lacks this feature. The Gibbs free energy calculation results show that the most likely reaction is the oxidation of CaSO3 and that oxidation and decomposition of calcium below 600 ℃ is not feasible. The number of active sites in the process of CaSO3 oxidation is proportional to temperature. Thus, when the temperature is between 623 and 723 K, the reaction is a first-order reaction. When the temperature exceeds 723 K, the reaction will be completed quickly in about 5 min, and the reaction order cannot be determined. -
圖 12 不同條件下氧化產物CaSO4的SEM圖. (a) 400 ℃; (b) 450 ℃; (c) 450 ℃下添加4% CaCl2; (d) 450 ℃下添加16% CaCl2; (e) 400 ℃下添加0.2% Fe2O3; (f) 400 ℃下添加0.6% Fe2O3
Figure 12. SEM images of CaSO4 under different conditions: (a) 400 ℃; (b) 450 ℃; (c) 450 ℃ and 4% CaCl2; (d) 450 ℃ and 16% CaCl2; (e) 400 ℃ and 0.2% Fe2O3; (f) 400 ℃ and 0.6% Fe2O3
圖 14 干熱氧化反應過程機理分析圖. (a)初始氧化條圖; (b)增加氧濃度后反應圖; (c)提高反應溫度后反應示意圖
Figure 14. Analysis diagram of the mechanism of dry heat oxidation reaction process: (a) initial oxidation bar diagram; (b) reaction diagram after increasing oxygen concentration; (c) schematic diagram of the reaction after increasing the reaction temperature
Notes: Round shadows are desulfurized ash particles; round spheres represent oxygen molecules; blue spheres are activated oxygen molecules.
表 1 脫硫灰化學成分(質量分數)
Table 1. Chemical composition of desulfurized ash
% Stage CaO SO3 SiO2 Fe2O3 Cl– Na2O MgO K2O Al2O3 Pelletizing 50.5 30.1 0.537 0.224 10.50 0.103 0.648 0.0826 0.372 South of sintering 54.1 25.4 0.522 0.654 3.34 0.853 1.540 2.4400 0.347 North of sintering 50.0 32.7 0.723 0.310 2.83 0.524 0.930 0.7380 0.847 表 2 CaSO3最終氧化產物成分分析
Table 2. Composition analysis of the final oxidation products of CaSO3
Stage Mass fraction/% Conversion rate/% Loss CaO SO3 SiO2 Fe2O3 Cl? Na2O MgO K2O Al2O2 Total sulfur Preoxidation 15.35 41.5 4.91 6.55 0.80 2.31 0.40 0.85 0.48 1.97 32.97 — Post-xidation 14.17 39.9 30.36 6.30 0.77 2.42 0.39 0.82 0.46 1.89 31.70 94.82 表 3 不同溫度與反應時間下CaSO3氧化轉化率
Table 3. Oxidation conversion of CaSO3 at different temperature and reaction times
% t/min 623 K 673 K 723 K 773 K 823 K 873 K 30 26.76 65.80 92.53 92.64 95.09 96.49 60 35.28 76.31 93.24 94.18 96.66 97.58 90 50.45 85.64 93.79 94.98 97.00 98.35 120 47.03 86.77 94.10 96.07 97.19 98.10 150 52.56 87.10 93.90 95.93 97.01 98.18 259luxu-164 -
參考文獻
[1] Qiu Z Z. Experimental study on preparation of aerated concrete block by dry desulfurization ash. Brick-Tile, 2018(11): 115 doi: 10.3969/j.issn.1001-6945.2018.11.032邱振中. 利用干法脫硫灰制備加氣混凝土砌塊的試驗研究. 磚瓦, 2018(11):115 doi: 10.3969/j.issn.1001-6945.2018.11.032 [2] Feng Q B. Study on calcium sulfite flue-gas gypsum producing high strength environmental painted gypsum. China Concr Cem Prod, 2013(2): 57 doi: 10.3969/j.issn.1000-4637.2013.02.014馮啟彪. 亞硫酸鈣型脫硫石膏生產高強環保型粉刷石膏的研究. 混凝土與水泥制品, 2013(2):57 doi: 10.3969/j.issn.1000-4637.2013.02.014 [3] Shi T, Li Z X, Guo J, et al. Research progress on CNTs/CNFs-modified cement-based composites-A review. Constr Build Mater, 2019, 202: 290 doi: 10.1016/j.conbuildmat.2019.01.024 [4] Su Q F, Chen Y R, Wu M Z. Experimental study of desulphurization residues as retarder of Portland cement. Cement, 2014(10): 7 doi: 10.13739/j.cnki.cn11-1899/tq.2014.10.002蘇清發, 陳永瑞, 吳慕正. 脫硫灰用作硅酸鹽水泥緩凝劑的試驗研究. 水泥, 2014(10):7 doi: 10.13739/j.cnki.cn11-1899/tq.2014.10.002 [5] Dong Y, Ren X, Zhang S, et al. Research on oxidation of CaSO3 in dry desulphurization slag. Environ Eng, 2012, 30(6): 95 [6] Bigham J M, Kost D A, Stehouwer R C, et al. Mineralogical and engineering characteristics of dry flue gas desulfurization products. Fuel, 2005, 84(14-15): 1839 doi: 10.1016/j.fuel.2005.03.018 [7] Cheng C M, Amaya M, Lin S S, et al. Leaching characterization of dry flue gas desulfurization materials produced from different flue gas sources in China. Fuel, 2017, 204: 195 doi: 10.1016/j.fuel.2017.05.016 [8] Zhang Y J, Feng G R, Zhang M, et al. Residual coal exploitation and its impact on sustainable development of the coal industry in China. Energy Policy, 2016, 96: 534 doi: 10.1016/j.enpol.2016.06.033 [9] Shi L, Xu P Z, Xie K Z, et al. Preparation of a modified flue gas desulphurization residue and its effect on pot sorghum growth and acidic soil amelioration. J Hazard Mater, 2011, 192(3): 978 doi: 10.1016/j.jhazmat.2011.05.102 [10] Guo B, Bian J F, Ren A L. Study on oxidation of calcium sulfate in the desulfurization ash of semi-dry sintering flue gas. Environ Pollut Control, 2009, 31(7): 1 doi: 10.3969/j.issn.1001-3865.2009.07.002郭斌, 卞京鳳, 任愛玲. 半干法燒結煙氣脫硫灰中亞硫酸鈣氧化研究. 環境污染與防治, 2009, 31(7):1 doi: 10.3969/j.issn.1001-3865.2009.07.002 [11] Zhou X F, Lang C Y, Chen X P, et al. Influence of activator on microstructure of the desulfurization ash cement. Bull Chin Ceram Soc, 2015, 34(5): 1435 doi: 10.16552/j.cnki.issn1001-1625.2015.05.048周向飛, 郎春燕, 陳小平, 等. 激發脫硫灰渣對水泥微觀結構的影響. 硅酸鹽通報, 2015, 34(5):1435 doi: 10.16552/j.cnki.issn1001-1625.2015.05.048 [12] Bian J F. Study on the Modified Process of Sintering Flue Gas Desulfurazation Ash by Circulating Fluidized Bed [Dissertation]. Shijiazhuang: Hebei University of Science and Technology, 2009卞京鳳. 循環流化床燒結煙氣脫硫灰改性工藝研究[學位論文]. 石家莊:河北科技大學, 2009 [13] Duan S Y, Liao H Q, Cheng F Q, et al. Investigation into the synergistic effects in hydrated gelling systems containing fly ash, desulfurization gypsum and steel slag. Constr Build Mater, 2018, 187: 1113 doi: 10.1016/j.conbuildmat.2018.07.241 [14] Li X D. Study on comprehensive utilization of desulfurization ash and its application in cement production in our factory. Guangdong Build Mater, 2013, 29(5): 7 doi: 10.3969/j.issn.1009-4806.2013.05.002李向東. 脫硫灰綜合利用的研究及在我廠水泥生產中的應用. 廣東建材, 2013, 29(5):7 doi: 10.3969/j.issn.1009-4806.2013.05.002 [15] Yao L. Study on Modification and Application of Semi-dry Sintering Flue Gas Desulphurization Ash [Dissertation]. Chongqing: Chongqing University, 2016姚璐. 半干法燒結煙氣脫硫灰改性及應用研究[學位論文]. 重慶:重慶大學, 2016 [16] Jin M H, Qian D Y, Su W. Thermal oxidation conditions optimization for calcium sulfite in desulfurization ash of CFB sintered flue gas. Chin J Environ Eng, 2020, 14(6): 1649 doi: 10.12030/j.cjee.201908071金明輝, 錢大益, 蘇偉. CFB燒結煙氣脫硫灰亞硫酸鈣熱氧化條件優化. 環境工程學報, 2020, 14(6):1649 doi: 10.12030/j.cjee.201908071 [17] Ma X X, Kaneko T, Tashimo T, et al. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed. Chem Eng Sci, 2000, 55(20): 4643 doi: 10.1016/S0009-2509(00)00090-7 [18] Wang X, Li Y J, Zhu T Y, et al. Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model. Chem Eng J, 2015, 264: 479 doi: 10.1016/j.cej.2014.11.038 [19] Li X G, Chen Q B, Ma B G, et al. Utilization of modified CFBC desulfurization ash as an admixture in blended cements: Physico-mechanical and hydration characteristics. Fuel, 2012, 102: 674 doi: 10.1016/j.fuel.2012.07.010 [20] Qi Y P. The Inhibited Mechanism of Sulfite in the Oxidation Reaction [Dissertation]. Beijing: North China Electric Power University, 2016齊艷平. 亞硫酸鹽氧化反應的抑制機理[學位論文]. 北京:華北電力大學, 2016 [21] Hu Z Q, Hua Y J, Du X W. Inorganic Chemistry (Book I). Beijing: Science Press, 2013胡宗球, 華英杰, 杜小旺. 無機化學(上冊). 北京:科學出版社, 2013 [22] Linek V, Vacek V. Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas–Liquid contactors. Chem Eng Sci, 1981, 36(11): 1747 doi: 10.1016/0009-2509(81)80124-8 [23] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci, 2008, 254(8): 2441 doi: 10.1016/j.apsusc.2007.09.063 [24] Liu Y Q, Yan Y, Xu Y H. Understanding and calculation of Gibbs free energy in physical chemistry. Guangdong Chem Ind, 2010, 37(12): 150 doi: 10.3969/j.issn.1007-1865.2010.12.076劉有芹, 顏蕓, 徐悅華. 物理化學中吉布斯自由能理解及計算. 廣東化工, 2010, 37(12):150 doi: 10.3969/j.issn.1007-1865.2010.12.076 [25] Zeng Y Y. Computer Simulation of Fluid Adsorption Behavior in Porous Materials and its Applications [Dissertation]. Hangzhou: Zhejiang University, 2008曾余瑤. 多孔材料吸附行為的理論計算與應用研究[學位論文]. 杭州:浙江大學, 2008 [26] Yan D Z. Research on Gas Adsorption Dynamics of Porous Silicon Device Surface [Dissertation]. Xi'an: Xi'an University of Science and Technology, 2015閆東芝. 多孔硅器件表面瓦斯氣體吸附動力學研究[學位論文]. 西安:西安科技大學, 2015 [27] Gao X Q, Zhu B Q, Wu X J, et al. Study on catalytic oxidation of semi-dry desulfurization ash. Chem Ind Times, 2012, 26(10): 1 doi: 10.3969/j.issn.1002-154X.2012.10.001高孝錢, 朱波青, 吳小俊, 等. 半干法脫硫灰的催化氧化研究. 化工時刊, 2012, 26(10):1 doi: 10.3969/j.issn.1002-154X.2012.10.001 [28] Hou G H, Shen X D, Xu Z Z. Effect of copper oxide on decomposition kinetics for calcium carbonate. J Chin Ceram Soc, 2005, 33(1): 109 doi: 10.3321/j.issn:0454-5648.2005.01.022侯貴華, 沈曉冬, 許仲梓. 氧化銅對碳酸鈣熱分解動力學過程的影響. 硅酸鹽學報, 2005, 33(1):109 doi: 10.3321/j.issn:0454-5648.2005.01.022 [29] Li L J, Xiang F Y, Cheng H, et al. Preparation Method of Square Shaped Calcium Sulfite Particles: China Patent, CN108529660A. 2018-9-14李利軍, 向富友, 程昊, 等. 一種方塊狀亞硫酸鈣微粒的制備方法:中國專利, CN108529660A. 2018-9-14 [30] Li L J, Xiang F Y, Cheng H, et al. Preparation Method of Calcium Sulfite Particles Having Amorphous Structure: China Patent, CN107188213B. 2018-10-26李利軍, 向富友, 程昊, 等. 無定型結構的亞硫酸鈣微粒的制備方法:中國專利, CN107188213B. 2018-10-26 -