<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

專家知識增強的機器學習建模在高強高導銅合金開發中的應用

苗海賓 向朝建 劉勝楠 黃東男 婁花芬

苗海賓, 向朝建, 劉勝楠, 黃東男, 婁花芬. 專家知識增強的機器學習建模在高強高導銅合金開發中的應用[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.09.19.002
引用本文: 苗海賓, 向朝建, 劉勝楠, 黃東男, 婁花芬. 專家知識增強的機器學習建模在高強高導銅合金開發中的應用[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.09.19.002
MIAO Haibin, XIANG Chaojian, LIU Shengnan, HUANG Dongnan, LOU Huafen. Application of expert-augmented machine learning modeling in high-strength and high-conductivity copper alloy development[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.19.002
Citation: MIAO Haibin, XIANG Chaojian, LIU Shengnan, HUANG Dongnan, LOU Huafen. Application of expert-augmented machine learning modeling in high-strength and high-conductivity copper alloy development[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.09.19.002

專家知識增強的機器學習建模在高強高導銅合金開發中的應用

doi: 10.13374/j.issn2095-9389.2022.09.19.002
基金項目: 北京市科技計劃資助項目(Z191100004619010, Z201100004520023)
詳細信息
    通訊作者:

    E-mail: louhuafen@cmari.com

  • 中圖分類號: TG146.11

Application of expert-augmented machine learning modeling in high-strength and high-conductivity copper alloy development

More Information
  • 摘要: 材料領域數據具有小樣本、噪聲大、維度高、關系復雜、專家知識豐富的特點. 利用專家知識增強機器學習建模效果具有必要性和可行性. 本文通過計算自變量與因變量之間的秩相關系數,來定量描述成分狀態因素與性能之間單調關系的強弱. 在模型訓練過程中,將秩相關系數加入到神經網絡損失函數,實時評估模型輸出與專家知識的相符程度,得到了專家知識增強的機器學習模型. 對訓練過程分析后發現,模型輸出的合理性有顯著提升,模型的輸入輸出規律與專家知識的相符程度達到了0.98以上(1.0為完全相符). 基于所建模型,采用遺傳算法進行了關于強度和導電率的多目標優化,找到了滿足帕累托最優的高強高導銅合金成分并開展了實驗驗證. 實驗結果表明,強度在高達637 MPa的同時,導電率仍能保持在77.5% IACS(國際退火銅標準)的水平;導電率高達80.2% IACS的同時,強度仍能保持在600 MPa的水平. 強度和導電率的預測值與實際值誤差在5%以內.

     

  • 圖  1  不同網絡結構下強度和導電率模型評分. (a)強度模型;(b)導電率模型

    Figure  1.  Strength and conductivity model scores for different network structures: (a) strength model; (b) conductivity model

    圖  2  專家知識增強的模型訓練策略

    Figure  2.  Training strategy of expert-augmented model

    圖  3  專家知識增強的模型迭代過程. (a)強度模型;(b)導電率模型

    Figure  3.  Iterative process of expert-augmented model: (a) strength model; (b) conductivity model

    圖  4  模型在測試集上的效果. (a)強度模型;(b)導電率模型

    Figure  4.  Performance of the model on the test dataset: (a) strength model; (b) conductivity model

    圖  5  關于強度和導電率的多目標優化結果

    Figure  5.  Results of multiobjective optimization between strength and conductivity

    圖  6  三種合金樣品的應力–應變曲線

    Figure  6.  Stress–strain curves of three alloy samples

    圖  7  不同成分下樣品性能實驗值與預測值對比

    Figure  7.  Comparison of the experimental and predicted values of sample performance at different compositions

    圖  8  1#合金組織演變規律. (a)鑄態;(b)成品態

    Figure  8.  Microstructure evolution of sample 1#: (a) as-cast condition; (b) finished product

    圖  9  2#合金組織演變規律. (a)鑄態;(b)成品態

    Figure  9.  Microstructure evolution of sample 2#: (a) as-cast condition; (b) finished product

    圖  10  3#合金組織演變規律. (a)鑄態;(b)成品態

    Figure  10.  Microstructure evolution of sample 3#: (a) as-cast condition; (b) finished product

    表  1  成分質量分數與性能的描述統計

    Table  1.   Statistical description of the composition mass fraction (%) and property data

    Variables Indicators
    Avg Std Min Max Count of
    nonzero value
    w(Mn) /% 0.026 0.11 0 0.5 32
    w(Fe)/% 0.19 0.49 0 2.35 103
    w(Ti)/% 0.16 0.67 0 3.2 61
    w(Co)/% 0.07 0.29 0 1.9 45
    w(P)/% 0.02 0.05 0 0.2 159
    w(Zr)/% 0.01 0.05 0 0.4 64
    w(Sn)/% 0.86 2.06 0 10 208
    w(Cr)/% 0.05 0.17 0 1.02 74
    w(Zn)/% 0.67 3.06 0 22.46 83
    w(Mg)/% 0.04 0.12 0 0.7 101
    w(Si)/% 0.15 0.26 0 0.925 120
    w(Ni)/% 1.6 3.59 0 21 174
    w(Ag)/% 0.002 0.02 0 0.2 12
    w(Al)/% 0.05 0.42 0 3.5 14
    w(Te)/% 0.0003 0.003 0 0.02 12
    UTS/MPa 623 211 248 1450 410
    EC/%IACS 55 27 3 102 410
    下載: 導出CSV

    表  2  銅合金狀態代號的編碼映射表(部分)

    Table  2.   Coding schedule of copper alloy condition symbols (partial)

    Material designation and
    its meaning
    Features and their values after recoding
    Hardened level/% Immediate quenching Precipitation hardening Order hardening Stress relieving Annealed
    H00 1/8 Hard 5 0 0 0 0 0
    H01 1/4 Hard 10 0 0 0 0 0
    H04 Hard 37.1 0 0 0 0 0
    TM00 heat-treated, 1/8 Hard 5 1 0 0 0 0
    TM01 heat-treated, 1/4 Hard 10 1 0 0 0 0
    TM06 heat-treated, extra hard 50 1 0 0 0 0
    TR01 precipitation hardening, stress
    relieving, 1/4 Hard
    10 0 1 0 1 0
    HT04 order-hardening, Hard 37.1 0 0 1 0 0
    O Annealed 0 0 0 0 0 1
    下載: 導出CSV

    表  3  校驗數據生成和平均Spearman系數計算示例(H: 硬化程度; P_EC: 導電率預測值)

    Table  3.   A demo for checking data generation and calculating the average Spearman correlation coefficient values (H: Hardened level; P_EC: Predicted value of EC)

    No. Ni mass fraction/% Si mass fraction/% Ti mass fraction/% ··· H/% P_EC/%IACS Absolute value of spearman
    scores between H and P_EC
    1 0 0.1 0.1 ··· 0 80 0.8
    2 0 0.1 0.1 ··· 15 85
    3 0 0.1 0.1 ··· 30 65
    4 0 0.1 0.1 ··· 45 50
    5 0 0.1 0.1 ··· 60 54
    60.20.30.2···0840.9
    7 0.2 0.3 0.2 ··· 15 73
    8 0.2 0.3 0.2 ··· 30 37
    9 0.2 0.3 0.2 ··· 45 40
    10 0.2 0.3 0.2 ··· 60 35
    110.40.20.3024
    ··· ··· ··· ··· ··· ··· ··· ···
    Average0.92
    下載: 導出CSV

    表  4  優化出的高強高導銅合金成分及預測性能

    Table  4.   Compositions and predicted properties of the optimized high-strength and high-conductivity copper alloys

    No. Composition(mass fraction)/% Predicted properties
    UTS/MPa EC/%IACS
    1# Cu–0.5Cr–0.2Zr–0.1Mg–0.05Ti–0.06Fe 613 78.1
    2# Cu–0.6Cr–0.15Zr–0.1Mg–0.02Ti–0.05Sn 635 77.2
    3# Cu–0.6Cr–0.1Zr–0.1Mg–0.02Ti 607 83.4
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xie J X, Su Y J, Xue D Z, et alMachine learning for materials research and developmentActa Metall Sin202157111343

    謝建新, 宿彥京, 薛德禎, 等機器學習在材料研發中的應用金屬學報202157111343
    [2] Agrawal A, Choudhary APerspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials scienceAPL Mater201645053208
    [3] Liu Y L, Niu C, Wang Z, et alMachine learning in materials genome initiative: A reviewJ Mater Sci Technol202057113
    [4] Hart G L W, Mueller T, Toher C, et alMachine learning for alloysNat Rev Mater202168730
    [5] Chen C, Zuo Y X, Ye W K, et alA critical review of machine learning of energy materialsAdv Energy Mater20201081903242
    [6] Raccuglia P, Elbert K C, Adler P D F, et alMachine-learning-assisted materials discovery using failed experimentsNature2016533760173
    [7] Janet J P, Chan L, Kulik H JAccelerating chemical discovery with machine learning: Simulated evolution of spin crossover complexes with an artificial neural networkJ Phys Chem Lett2018951064
    [8] Torkamannia A, Omidi Y, Ferdousi RA review of machine learning approaches for drug synergy prediction in cancerBrief Bioinform2022233bbac075
    [9] Zheng W D, Zhang H R, Hu H Q, et alPerformance prediction of perovskite materials based on different machine learning algorithmsChin J Nonferrous Met2019294803

    鄭偉達, 張惠然, 胡紅青, 等基于不同機器學習算法的鈣鈦礦材料性能預測中國有色金屬學報2019294803
    [10] Balachandran P V, Emery A A, Gubernatis J E, et alPredictions of new ABO3 perovskite compounds by combining machine learning and density functional theoryPhys Rev Materials201824043802
    [11] She C L, Huang Q C, Chen C, et alMachine learning-guided search for high-efficiency perovskite solar cells with doped electron transport layersJ Mater Chem A202194425168
    [12] Sun Y T, Bai H Y, Li M Z, et alMachine learning approach for prediction and understanding of glass-forming abilityJ Phys Chem Lett20178143434
    [13] Xiong J E, Zhang T Y, Shi S QMachine learning prediction of elastic properties and glass-forming ability of bulk metallic glassesMRS Commun201992576
    [14] Xu Y, Zhang Y F, Gao T, et alParameters analysis of Al-based amorphous alloys using support vector regressionChin J Nonferrous Met2016264836

    徐燕, 張玉鳳, 高湉, 等Al基非晶合金表征參數的支持向量回歸分析中國有色金屬學報2016264836
    [15] Wang J, Xiao B, Liu Y. Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy CoxCryTizMouWvMater China2020394269

    王炯, 肖斌, 劉軼. 機器學習輔助的高通量實驗加速硬質高熵合金CoxCryTizMouWv成分設計. 中國材料進展2020394269
    [16] Rao Z Y, Tung P Y, Xie R W, et alMachine learning-enabled high-entropy alloy discoveryScience2022378661578
    [17] Klimenko D, Stepanov N, Li J A, et alMachine learning-based strength prediction for refractory high-entropy alloys of the Al–Cr–Nb–Ti–V–Zr systemMaterials202114237213
    [18] Wang C S, Fu H D, Jiang L, et alA property-oriented design strategy for high performance copper alloys via machine learningNPJ Comput Mater2019587
    [19] Zhang H T, Fu H D, He X Q, et alDramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screeningActa Mater2020200803
    [20] Wu S W, Zhou X G, Ren J K, et alOptimal design of hot rolling process for C–Mn steel by combining industrial data-driven model and multi-objective optimization algorithmJ Iron Steel Res Int2018257700
    [21] Qiu H D, Tian J Y, Wang S Y, et alModeling method of fuzzy neural network and its application in rolling force controlChina Metall202131152

    邱華東, 田建艷, 王書宇, 等模糊神經網絡融合建模方法及其在軋制力控制中的應用中國冶金202131152
    [22] Asif K, Zhang L, Derrible S, et alMachine learning model to predict welding quality using air-coupled acoustic emission and weld inputsJ Intell Manuf2022333881
    [23] Hart-Rawung T, Buhl J, Bambach MA fast approach for optimization of hot stamping based on machine learning of phase transformation kineticsProcedia Manuf202047707
    [24] Su Y J, Fu H D, Bai Y, et alProgress in materials genome engineering in ChinaActa Metall Sin202056101313

    宿彥京, 付華棟, 白洋, 等中國材料基因工程研究進展金屬學報202056101313
    [25] Raissi MDeep hidden physics models: Deep learning of nonlinear partial differential equationsJ Mach Learn Res2018191
    [26] Sun L N, Gao H, Pan S W, et alSurrogate modeling for fluid flows based on physics-constrained deep learning without simulation dataComput Methods Appl Mech Eng2020361112732
    [27] Sang L, Xu M, Qian S S, et alKnowledge graph enhanced neural collaborative filtering with residual recurrent networkNeurocomputing2021454417
    [28] Chai X QDiagnosis method of thyroid disease combining knowledge graph and deep learningIEEE Access20208149787
    [29] Heaton J. The number of hidden layers [R/OL]. Heaton Research (2017-06-01) [2022-09-19]. https://www.heatonresearch.com/2017/06/01/hidden-layers.html
  • 加載中
圖(10) / 表(4)
計量
  • 文章訪問數:  286
  • HTML全文瀏覽量:  43
  • PDF下載量:  26
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-19
  • 網絡出版日期:  2023-03-01

目錄

    /

    返回文章
    返回