Energy dissipation and fracture characteristics of composite layered rock under dynamic load
-
摘要: 利用砂巖、大理巖、花崗巖制作6種不同組合方式的層狀復合巖石,采用分離式霍普金森壓桿試驗系統,對不同組合方式的層狀巖石進行動態沖擊試驗,利用高速相機記錄其破壞形態,分析復合巖石材料的動態斷裂模式、波阻抗效應以及能量耗散規律,探究不同復合巖石試件的動能及斷裂能關系. 利用離散格子彈簧模型模擬復合巖石試件的動態斷裂過程,分析復合試件的應力波傳播特性及應力、損傷演化規律. 研究結果表明:復合巖石材料的動態斷裂特征與上下層材料具有相關性,當下層材料動態起裂韌度較低時,裂紋從起裂至擴展到巖石膠結面歷時較短. 上層材料對于復合巖石的應力傳導作用具有較大的相關性,上層材料密度越大,更有利于透射波傳遞,應力傳導效果越好,而下層材料與上層材料密度相差越大,膠結面上下端應力差越大;受波阻抗效應影響,復合巖石試件應力波的傳播行為具有明顯差異,波阻抗越大應力波傳播速度越快,透射系數越大,產生更多的透射能;復合巖石試件的耗散能時密度、動能及斷裂能與上下層巖石材料的密度有關,下層材料不變,上層材料密度越大時,耗散能時密度及斷裂能更小,試件完全斷裂時獲得較大的動能.Abstract: Six combinations of layered composite rocks were prepared using sandstone, dali rock, and granite. The composite rock specimens underwent a dynamic impact test using the separated Hopkinson pressure rod test system, and the failure patterns of the specimens were recorded using high-speed cameras. The dynamic fracture mode, wave impedance effect, and energy dissipation nature of these composite rock specimens were analyzed, and the relationship between their kinetic energy and fracture energy was explored. The discrete lattice spring model was used to simulate the dynamic fracture process of the composite rock specimens, and the stress wave propagation characteristics and stress and damage evolution nature of the composite specimens were analyzed. The results show that the dynamic fracture characteristics of composite rock materials are strongly influenced by the uppermost and lowermost layer materials. When the dynamic cracking toughness of the material in the lower layer is low, the crack can maintain a high propagation speed and requires a short time from initiation to expansion to the rock cemented surface. The upper layer material has a greater influence on the stress conduction of the composite rock specimen. The overall transmission capacity depends on the upper layer material such that the greater its density, the more conducive it is to wave transmission and the better the stress conduction. The greater the difference in the densities of the lower and upper layer materials, the greater the difference between the stresses at the upper and lower ends of the rock cemented surface. Wave impedance has a significant effect on the propagation behavior of the stress wave. The propagation speed of the stress wave in the composite specimen is influenced by the porosity and density of the material. The larger the wave impedance, the faster the propagation speed of the stress wave, the larger the transmission coefficient, and the higher the energy transmitted. When energy is dissipated, the density, kinetic energy, and fracture energy of the composite rock specimen are influenced by the densities of the materials in the upper and lower layers. If the lower layer material is unchanged, a higher density of the upper layer material results in a smaller density and fracture energy when the energy is dissipated, yielding more kinetic energy when the specimen is completely fractured. When the upper layer material remains unchanged and the density of the lower material is increased, the cutting tip is more likely to crack, and the density and fracture energy are smaller when the energy is dissipated.
-
圖 15 復合試件膠結面兩端監測點應力時程曲線. (a) DS試件; (b) SD試件; (c) DH試件; (d) HD試件; (e) SH試件; (f) HS試件
Figure 15. Stress time–history curves of monitoring points at both ends of the cemented surface of the composite rock specimens: (a) DS specimen; (b) SD specimen; (c) DH specimen; (d) HD specimen; (e) SH specimen; (f) HS specimen
表 1 試驗材料物理力學參數
Table 1. Physical and mechanical parameters of the test materials
Test material density/(kg·m–3) Elastic modulus/GPa Poisson’s ratio Sandstone 2600 4.6 0.24 Marble 2500 3.0 0.3 Granite 3000 18.4 0.2 表 2 復合試件耗散能、動能及斷裂能
Table 2. Dissipated energy, kinetic energy, and fracture energy of the composite rock specimens
Specimen Dissipated energy, ED/(kJ·m?3·s?1) Kinetic energy, EK/(kJ·m?3·s?1) Fracture energy, EFD/(kJ·m?3·s?1) DS 19.14 0.99 18.16 SD 16.03 2.82 13.21 DH 17.63 2.45 15.19 HD 13.23 3.73 9.49 SH 14.88 3.00 11.88 HS 12.08 4.66 7.42 259luxu-164 -
參考文獻
[1] Ma Q, Tan Y L, Liu X S, et al. Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples. J Cent South Univ, 2021, 28(10): 3207 doi: 10.1007/s11771-021-4831-6 [2] Song H Q, Zuo J P, Liu H Y, et al. The strength characteristics and progressive failure mechanism of soft rock-coal combination samples with consideration given to interface effects. Int J Rock Mech Min Sci, 2021, 138: 104593 doi: 10.1016/j.ijrmms.2020.104593 [3] Teng J Y, Tang J X, Wang J B, et al. The evolution law of the damage of bedded composite rock and its fractal characteristics. Chin J Rock Mech Eng, 2018, 37(S1): 3263騰俊洋, 唐建新, 王進博, 等. 層狀復合巖體損傷演化規律及分形特征. 巖石力學與工程學報, 2018, 37(S1):3263 [4] Yu Y Q, Hu M Y, Yang X L, et al. Similarity simulation of bedded composite rock. Met Mine, 2009(1): 21余永強, 胡明研, 楊小林, 等. 層狀復合巖體相似模擬的試驗研究. 金屬礦山, 2009(1):21 [5] Liu X Y, Ye Y C, Wang Q H, et al. Mechanical properties of similar material specimens of composite rock masses with different strengths under uniaxial compression. Rock Soil Mech, 2017, 38(S2): 183劉曉云, 葉義成, 王其虎, 等. 單軸壓縮下不同強度組合復合巖體相似材料試件力學特性研究. 巖土力學, 2017, 38(S2):183 [6] Li A, Shao G J, Fan H L, et al. Investigation of mechanical properties of soft and hard interbedded composite rock mass based on meso-level heterogeneity. Chin J Rock Mech Eng, 2014, 33(S1): 3042李昂, 邵國建, 范華林, 等. 基于細觀層次的軟硬互層狀復合巖體力學特性研究. 巖石力學與工程學報, 2014, 33(S1):3042 [7] Zhou H, Song M, Zhang C Q, et al. Effect of confining pressure on mechanical properties of horizontal layered composite rock. Rock Soil Mech, 2019, 40(2): 465周輝, 宋明, 張傳慶, 等. 水平層狀復合巖體變形破壞特征的圍壓效應研究. 巖土力學, 2019, 40(2):465 [8] Wang T, Ma Z G, Gong P, et al. Analysis of failure characteristics and strength criterion of coal-rock combined body with different height ratios. Adv Civ Eng, 2020, 2020: 1 [9] Guo D M, Zuo J P, Zhang Y, et al. Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles. Rock Soil Mech, 2011, 32(5): 1333郭東明, 左建平, 張毅, 等. 不同傾角組合煤巖體的強度與破壞機制研究. 巖土力學, 2011, 32(5):1333 [10] Yin G Z, Li X, Lu J, et al. A failure criterion for layered composite rock under true triaxial stress conditions. Chin J Rock Mech Eng, 2017, 36(2): 261尹光志, 李星, 魯俊, 等. 真三軸應力條件下層狀復合巖石破壞準則. 巖石力學與工程學報, 2017, 36(2):261 [11] Liu Y S, Zhan X C, Qiu C C. Study on mechanical properties of layered composite rock under triaxial compression. J East China Jiaotong Univ, 2021, 38(3): 1劉永勝, 詹學才, 邱傳傳. 層狀復合巖石三軸壓縮力學性能研究. 華東交通大學學報, 2021, 38(3):1 [12] Zhu C J, Ma C, Zhou J X, et al. Mechanical properties and failure characteristics of composite coal and rock mass under dynamic and static loading. J China Coal Soc, 2021, 46(S2): 817朱傳杰, 馬聰, 周靖軒, 等. 動靜載荷耦合作用下復合煤巖體的力學特性及破壞特征. 煤炭學報, 2021, 46(S2):817 [13] Du C C, Wen S, Kong Q M. Tests for dynamic mechanical properties of composite rock samples under 1-D dynamic-static combined loading. J Vib Shock, 2021, 40(21): 168杜超超, 溫森, 孔慶梅. 一維動靜組合加載下復合巖樣動態力學特性試驗研究. 振動與沖擊, 2021, 40(21):168 [14] Wen S, Zhang C S, Chang Y L, et al. Dynamic compression characteristics of layered rock mass of significant strength changes in adjacent layers. J Rock Mech Geotech Eng, 2020, 12(2): 353 doi: 10.1016/j.jrmge.2019.09.003 [15] Yang R S, Li W Y, Fang S Z, et al. Experimental study on impact dynamic characteristics of layered composite rocks. Chin J Rock Mech Eng, 2019, 38(9): 1747楊仁樹, 李煒煜, 方士正, 等. 層狀復合巖體沖擊動力學特性試驗研究. 巖石力學與工程學報, 2019, 38(9):1747 [16] Yue Z W, Song Y, Chen B, et al. A study on the behaviors of dynamic fracture in layered rocks under impact loading. J Vib Shock, 2017, 36(12): 223岳中文, 宋耀, 陳彪, 等. 沖擊載荷下層狀巖體動態斷裂行為的模擬試驗研究. 振動與沖擊, 2017, 36(12):223 [17] Li N N, Li J C, Li H B, et al. Shpb experiment on influence of contact area of joints on propagation of stress wave. Chin J Rock Mech Eng, 2015, 34(10): 1994李娜娜, 李建春, 李海波, 等. 節理接觸面對應力波傳播影響的SHPB試驗研究. 巖石力學與工程學報, 2015, 34(10):1994 [18] Li X B. Rock Dynamics Fundamentals and Applications. Beijing: Science Press, 2014李夕兵. 巖石動力學基礎與應用. 北京:科學出版社, 2014 [19] Pan B, Wang X G, Xu Z Y, et al. Research on the effect of joint angle on dynamic responses of rock materials. Chin J Rock Mech Eng, 2021, 40(3): 566潘博, 汪旭光, 徐振洋, 等. 節理角度對巖石材料的動態響應影響研究. 巖石力學與工程學報, 2021, 40(3):566 [20] Chen R, Xia K, Dai F, et al. Determination of dynamic fracture parameters using a semi-circular bend technique in split Hopkinson pressure bar testing. Eng Fract Mech, 2009, 76(9): 1268 doi: 10.1016/j.engfracmech.2009.02.001 [21] Zhao G. Development of Micro-Macro Continuum-Discontinuum Coupled Numerical Method [Dissertation]. Switzerland: Ecole Polytechnique Federale de Lausanne, 2010 [22] Zhao G F, Fang J N, Zhao J A. A 3D distinct lattice spring model for elasticity and dynamic failure. Int J Numer Anal Meth Geomech, 2011, 35(8): 859 doi: 10.1002/nag.930 [23] Zhao Y X, Zhao G F, Jiang Y D, et al. Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation. Int J Coal Geol, 2014, 132: 81 doi: 10.1016/j.coal.2014.08.007 [24] Zhao Y X, Zhao G F, Jiang Y D. Experimental and numerical modelling investigation on fracturing in coal under impact loads. Int J Fract, 2013, 183: 63 doi: 10.1007/s10704-013-9876-6 -