-
摘要: 近些年來,隨著全球新能源汽車和智能電子產品市場的逐漸擴大,鋰離子電池數量急劇增加,從保護生態環境和節約資源的角度來看,開展廢舊鋰電池的回收再生研究具有極大的社會和經濟價值。以三元鋰電池為例,介紹了三元鋰電池正極失效原因以及傳統火法冶金和濕法冶金浸出工藝的回收條件、應用現狀和優缺點,綜述了廢舊三元鋰電池濕法冶金浸出后再生和直接再生的研究進展。基于此,特別論述了再生后的三元鋰電池正極材料通過離子摻雜和表面包覆改性升級的創新策略。最后,展望了廢舊三元鋰電池回收再生工藝的發展前景,以期對廢舊鋰電池回收體系的完善提供一定的參考和建議,形成經濟效益好、綠色環保的鋰電池生產—回收閉路循環回收體系。Abstract: In recent years, with the gradual expansion of the global market for new energy vehicles, the supply and demand of lithium-ion batteries (LIBs) as a source of energy have been increasing, which directly promotes the significant increase in the number of used LIBs. Among them, ternary LIBs have been widely used because of their high specific capacity and excellent multiplying performance, which has aroused people’s concerns about their proper disposal. On the one hand, ternary LIBs contain rich nonferrous metals, such as lithium, nickel, cobalt, and manganese, with high recovery values. On the other hand, spent ternary LIBs contain a large number of toxic electrolytes and heavy metals, which will cause environmental pollution and damage human health if not handled properly. Therefore, research on the recycling and regeneration of spent ternary LIBs has been receiving considerable attention. Given the principles of low energy consumption, “green” recovery, and high recovery rate, this study briefly introduces the main failure causes of cathode materials for ternary LIBs and discusses the application scope and the advantages and disadvantages of traditional pyrometallurgy (such as chemical reduction and salinization roasting) and hydrometallurgical leaching processes (such as acid, alkali, and biological leaching). This review creatively summarizes the research progress on regeneration after hydrometallurgical leaching (such as coprecipitation and sol–gel methods) and direct regeneration (such as high-temperature solid-phase method, solvothermal treatment, and molten salt method) of spent ternary LIBs in recent years and analyzes the advantages and disadvantages of various regeneration technologies. Notably, compared with traditional pyrometallurgy and hydrometallurgy, the process of regeneration after hydrometallurgical leaching and direct regeneration considerably reduces the complexity of the process flow, maximizes the comprehensive utilization rate of nonferrous metals, and realizes the closed-loop recovery route of spent LIB cathode. Based on this, the innovative strategy of upgrading the cathode material of regenerated ternary LIBs through ion doping and surface coating modification, which effectively improved the poor thermal stability, short cycling, and low rate performance of ternary LIBs caused by high nickel content, was particularly discussed. Finally, from the perspective of recycling methods, multiple modification strategies, and mechanism research, the future development of recycling technology for spent ternary LIBs is proposed. This study aims to provide some references and suggestions for the improvement of the spent LIB recycling system and establish a closed-cycle recycling system for the production and recycling of spent LIBs.
-
Key words:
- ternary lithium battery /
- cathode material /
- pyrometallurgy /
- hydrometallurgy /
- regenerate /
- cathode modification
-
表 1 火法冶金—濕法冶金聯合回收有價金屬浸出率
Table 1. Leaching rates of valuable metals recovered by pyrometallurgy and hydrometallurgy
Recovery method Leaching rate/% Reference Li Ni Co Mm Graphite reduction roasting and sulfuric acid leaching 90.0 90.0 97.0 [20] Carbothermal reduction, carbonated water leaching and sulfuric acid leaching >80.0 98.0 96.0 96.0 [21] Carbothermal reduction and sulfuric acid leaching 93.67 93.33 98.08 98.68 [22] Carbothermal reduction, carbonated water leaching and sulfuric acid leaching 84.7 >99.0 [23] Microwave carbothermal reduction fumaric acid leaching 99.6 >97. 0 [24] Carbothermal reduction and carbonic acid water immersion 99.2 [25] Nitrate roasting and water leaching >99. 0 [26] Chlorination roasting and carbonic acid water leaching >90. 0 [27] 表 2 各浸出體系的舉例
Table 2. Examples of each leaching system
Technology Leaching system Optimal condition Leaching rate/% Reference Li Ni Co Mn Acid leaching Citric acid Sucrose Ambient temperature 60 min 99 [39] Trichloroacetic acid Hydrogen peroxide 60 ℃ 30 min 99.7 93.0 91.8 89.8 [40] Citric acid D-glucose 80 ℃ 120 min 99 91 92 94 [41] Ascorbic acid 69.26 ℃ 59.79 min 92.53 56.32 96.35 89.28 [42] Acetic acid Hydrogen peroxide 60 ℃ 60 min >99 [43] Phosphoric acid Hydrogen peroxide 40 ℃ 60 min 95.4 99.8 99.5 98.0 [44] Alkali leaching Ammonia water Ammonium sulfite 80 ℃ 1 h 25 80 1 [45] Ammonia Sodium sulfite 80 ℃ 2 h 79.1 85.3 86.4 [46] Ammonia water Ammonium chloride Ammonium sulfite 150 ℃ 30 min 90.3 98.3 100 [47] Bioleaching Iron–sulfur-oxidizing bacteria 30 ℃ 60 min 60.0 48.7 53.2 81.8 [48] Aspergillus niger 30 ℃ 30 days 100 45 38 72 [49] Thiobacillus ferrooxidans 30 ℃ 24 h 89 90 82 92 [50] 表 3 共沉淀法不同沉淀體系的反應原理
Table 3. Reaction principles of different precipitation systems in the coprecipitation method
Type Reaction principle Reference Hydroxide coprecipitation $x{\text{Ni} }_{\text{aq} }^{\text{2+} }+{y}{\text{Co} }_{\text{aq} }^{\text{2+} }+{z}{\text{Mn} }_{\text{aq} }^{\text{2+} }+{n}{\text{NH} }_{\text{3} }\cdot{\text{H} }_{\text{2} }{\text{O} }_{\text{aq} }={\left[{\text{Ni} }_{ {x} }{\text{Co} }_{ {y} }{\text{Mn} }_{z}{\left({\text{NH} }_{\text{3} }\right)}_{ {n} }\right]}_{\text{aq} }^{\text{2+} }+{n\text{H} }_{\text{2} }\text{O}$ (x+y+z=1)
${\text{[}{\text{Ni} }_{ {x} }{\text{Co} }_{y}{\text{Mn} }_{ {z} }{\text{(}{\text{NH} }_{\text{3} }\text{)} }_{ {n} }\text{]} }_{\text{aq} }^{\text{2+} }+{\text{2OH} }^{ {-} }={\text{Ni} }_{x}{\text{Co} }_{ {y} }{\text{Mn} }_{ {z} }{\text{(OH)} }_{\text{2} }+{ {n}\text{NH} }_{\text{3} }$ (x+y+z=1)[52] Carbonate coprecipitation ${ {x}\text{Ni} }_{\text{aq} }^{\text{2+} }+{ {y}\text{Co} }_{\text{aq} }^{\text{2+} }+{z\text{Mn} }_{\text{aq} }^{\text{2+} }+n\text{NH} _{\text{3} }\cdot{\text{H} }_{\text{2} }{\text{O} }_{\text{aq} }={\left[{\text{Ni} }_{ {x} }{\text{Co} }_{ {y} }{\text{Mn} }_{z}{\left({\text{NH} }_{\text{3} }\right)}_{ {n} }\right]}_{\text{aq} }^{\text{2+} }+{ {n}\text{H} }_{\text{2} }\text{O}$ (x+y+z=1)
${\text{[}{\text{Ni} }_{x}{\text{Co} }_{ {y} }{\text{Mn} }_{z}{\text{(}{\text{NH} }_{\text{3} }\text{)} }_{ {n} }\text{]} }_{\text{aq} }^{\text{2+} }+{\text{CO} }_{\text{3} }^{ {2-} }{+}{ {n}\text{H} }_{\text{2} }\text{O=}\left({\text{Ni} }_{ {x} }{\text{Co} }_{ {y} }{\text{Mn} }_{{z} }\right){\text{CO} }_{\text{3} }+{{n}\text{NH} }_{\text{3} }\cdot{\text{H} }_{\text{2} }{\text{O} }_{\text{aq} }$ (x+y+z=1)[53] Oxalate coprecipitation $\text{4}{\text{H} }_{\text{2} }{\text{C} }_{\text{2} }{\text{O} }_{\text{4} }\text{+2Li}{\text{Ni} }_{{x} }{\text{Co} }_{y}{\text{Mn} }_{{z} }{\text{O} }_{\text{2} }{=2}\left({\text{Ni} }_{{x} }{\text{Co} }_{{y} }{\text{Mn} }_{{z} }\right){\text{C} }_{\text{2} }{\text{O} }_{\text{4} }{+4}{\text{H} }_{\text{2} }\text{O+2C}{\text{O} }_{\text{2} }$ (x+y+z=1) [54] 表 4 傳統濕法冶金、火法冶金和直接再生的優缺點
Table 4. Advantages and disadvantages of traditional hydrometallurgy, pyrometallurgy, and direct regeneration
Recycling method Advantages Disadvantages References Hydrometallurgy Low-temperature operation
High material purity
Low energy consumptionComplex process
Secondary acid–base pollution
Large consumption of chemicals[59] Pyrometallurgy Simple process
Large processing capacityHigh energy consumption
Low metal recovery[65?66] Direct regeneration Simple process Low cost Single process at present
High requirements for battery classification[62, 67] 259luxu-164 -
參考文獻
[1] Xing L, Lin S, Yu J G. Novel recycling approach to regenerate a LiNi0.6Co0.2Mn0.2O2 cathode material from spent lithium-ion batteries. Ind Eng Chem Res, 2021, 60(28): 10303 doi: 10.1021/acs.iecr.1c01151 [2] Fan E S, Li L, Wang Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev, 2020, 120(14): 7020 doi: 10.1021/acs.chemrev.9b00535 [3] Xiao J F, Li J, Xu Z M. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives. Environ Sci Technol, 2020, 54(1): 9 doi: 10.1021/acs.est.9b03725 [4] Zou H Y, Gratz E, Apelian D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem, 2013, 15(5): 1183 doi: 10.1039/c3gc40182k [5] Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources. Inorg Chem Ind, 2020, 52(7): 1 doi: 10.11962/1006-4990.2020-0028張蘇江, 張彥文, 張立偉, 等. 中國鋰礦資源現狀及其可持續發展策略. 無機鹽工業, 2020, 52(7):1 doi: 10.11962/1006-4990.2020-0028 [6] Lu Y G, Hao B, Sun K, et al. General situation of cobalt resource and its utilization analysis. Geol Surv Res, 2020, 43(1): 72 doi: 10.3969/j.issn.1672-4135.2020.01.008盧宜冠, 郝波, 孫凱, 等. 鈷金屬資源概況與資源利用情況分析. 地質調查與研究, 2020, 43(1):72 doi: 10.3969/j.issn.1672-4135.2020.01.008 [7] Wei G. Development status and market analysis of nickel industry in China. China Nonferrous Met, 2020(14): 44 doi: 10.3969/j.issn.1673-3894.2020.14.011魏國. 我國鎳產業發展現狀及市場分析. 中國有色金屬, 2020(14):44 doi: 10.3969/j.issn.1673-3894.2020.14.011 [8] Liang R, Wu Z Y, Yang W M, et al. A simple one-step molten salt method for synthesis of micron-sized single primary particle LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Ionics, 2020, 26(4): 1635 doi: 10.1007/s11581-020-03500-0 [9] Wang J, Liang J, Li H, et al. Status and prospects of treatment methods for valuable metals in spent lithium-ion battery. Hot Work Technol, 2018, 47(22): 12 doi: 10.14158/j.cnki.1001-3814.2018.22.003王晶, 梁精龍, 李慧, 等. 廢舊鋰電池中有價金屬的處理方法現狀及展望. 熱加工工藝, 2018, 47(22):12 doi: 10.14158/j.cnki.1001-3814.2018.22.003 [10] Fey G T K, Chang C S, Kumar T P. Synthesis and surface treatment of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Solid State Electrochem, 2010, 14(1): 17 doi: 10.1007/s10008-008-0772-3 [11] Yoshio M, Noguchi H, Itoh J I, et al. Preparation and properties of LiCoyMnxNi1?x?yO2 as a cathode for lithium ion batteries. J Power Sources, 2000, 90(2): 176 doi: 10.1016/S0378-7753(00)00407-9 [12] Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered LiNixCoyMnzO2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources, 2013, 233: 121 [13] Li W D, Liu X M, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cyclability. Adv Energy Mater, 2018, 8(15): 1703154 doi: 10.1002/aenm.201703154 [14] Ryu H H, Park K J, Yoon C S, et al. Capacity fading of Ni-rich Li [NixCoyMn1–x–y]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem Mater, 2018, 30(3): 1155 [15] Mu L Q, Yuan Q X, Tian C X, et al. Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials. Nat Commun, 2018, 9(1): 2810 doi: 10.1038/s41467-018-05172-x [16] Sayilgan E, Kukrer T, Civelekoglu G, et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy, 2009, 97(3-4): 158 doi: 10.1016/j.hydromet.2009.02.008 [17] Pindar S, Dhawan N. Comparison of microwave and conventional indigenous carbothermal reduction for recycling of discarded lithium-ion batteries. Trans Indian Inst Met, 2020, 73(8): 2041 doi: 10.1007/s12666-020-01956-2 [18] Zhao Y Z, Liu B G, Zhang L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J Hazard Mater, 2020, 384: 121487 doi: 10.1016/j.jhazmat.2019.121487 [19] Gao G L, He X, Li Y G, et al. Current status of recycling technology of spent automotive lithium-ion batteries. Environ Eng, 2017, 35(10): 135 doi: 10.13205/j.hjgc.201710028高桂蘭, 賀欣, 李亞光, 等. 廢舊車用動力鋰離子電池的回收利用現狀. 環境工程, 2017, 35(10):135 doi: 10.13205/j.hjgc.201710028 [20] Zhang Y C, Wang W Q, Fang Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Waste Manag, 2020, 102: 847 doi: 10.1016/j.wasman.2019.11.045 [21] Zhang J L, Hu J T, Zhang W J, et al. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. J Clean Prod, 2018, 204: 437 doi: 10.1016/j.jclepro.2018.09.033 [22] Liu P C, Xiao L, Tang Y W, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials. J Therm Anal Calorim, 2019, 136(3): 1323 doi: 10.1007/s10973-018-7732-7 [23] Hu J T, Zhang J L, Li H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources, 2017, 351: 192 doi: 10.1016/j.jpowsour.2017.03.093 [24] Fu Y P, He Y Q, Li J L, et al. Improved hydrometallurgical extraction of valuable metals from spent lithium-ion batteries via a closed-loop process. J Alloys Compd, 2020, 847: 156489 doi: 10.1016/j.jallcom.2020.156489 [25] Zhao Y Z, Liu B G, Zhang L B, et al. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries. J Hazard Mater, 2020, 396: 122740 doi: 10.1016/j.jhazmat.2020.122740 [26] Peng C, Liu F P, Wang Z L, et al. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J Power Sources, 2019, 415: 179 doi: 10.1016/j.jpowsour.2019.01.072 [27] Fan E S, Li L, Lin J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries. ACS Sustainable Chem Eng, 2019, 7(19): 16144 doi: 10.1021/acssuschemeng.9b03054 [28] Ministry of Industry and Information Technology. Industry specifications for comprehensive utilization of waste power batteries for new energy vehicles (2019 Version). Recycl Resour Circ Econ, 2020, 13(01): 1 doi: 10.3969/j.issn.1674-0912.2020.01.001工業和信息化部. 新能源汽車廢舊動力蓄電池綜合利用行業規范條件(2019年本). 再生資源與循環經濟, 2020, 13(01):1 doi: 10.3969/j.issn.1674-0912.2020.01.001 [29] Tao R, Xing P, Li H Q, et al. Full-component pyrolysis coupled with reduction of cathode material for recovery of spent LiNixCoyMnzO2 lithium-ion batteries. ACS Sustainable Chem Eng, 2021, 9(18): 6318 doi: 10.1021/acssuschemeng.1c00210 [30] Cheng X Y, Guo G H, Cheng Y K, et al. Effect of hydrogen peroxide on the recovery of valuable metals from spent LiNi0.6Co0.2Mn0.2O2 batteries. Energy Tech, 2022, 10(4): 2200039 doi: 10.1002/ente.202200039 [31] Higuchi A, Ankei N, Nishihama S, et al. Selective recovery of lithium from cathode materials of spent lithium ion battery. JOM, 2016, 68(10): 2624 doi: 10.1007/s11837-016-2027-6 [32] Fu Y P, He Y Q, Yang Y, et al. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries. J Alloys Compd, 2020, 832: 154920 doi: 10.1016/j.jallcom.2020.154920 [33] Or T, Gourley S W D, Kaliyappan K, et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2020, 2(1): 6 doi: 10.1002/cey2.29 [34] Zhang X X, Li L, Fan E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev, 2018, 47(19): 7239 doi: 10.1039/C8CS00297E [35] Refly S, Floweri O, Mayangsari T R, et al. Green recycle processing of cathode active material from LiNi1/3Co1/3Mn1/3O2 (NCM111) battery waste through citric acid leaching and oxalate co-precipitation process. Mater Today Proc, 2021, 44: 3378 doi: 10.1016/j.matpr.2020.11.664 [36] Shen B, Gu W X, Yuan H P, et al. A review on leaching and purification technologies of spent ternary Li-ion batteries. Environ Sci Technol, 2018, 41(2): 114 doi: 10.19672/j.cnki.1003-6504.2018.02.017沈棒, 顧衛星, 袁海平, 等. 廢舊三元鋰離子電池浸出及純化技術研究進展. 環境科學與技術, 2018, 41(2):114 doi: 10.19672/j.cnki.1003-6504.2018.02.017 [37] Moazzam P, Boroumand Y, Rabiei P, et al. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere, 2021, 277: 130196 doi: 10.1016/j.chemosphere.2021.130196 [38] Zou C, Pan J L, Liu W Q, et al. Progress in hydrometallurgical process for recycling ternary cathode material of Li-ion battery. Battery Bimon, 2018, 48(2): 130 doi: 10.19535/j.1001-1579.2018.02.016鄒超, 潘君麗, 劉維橋, 等. 濕法回收鋰離子電池三元正極材料的進展. 電池, 2018, 48(2):130 doi: 10.19535/j.1001-1579.2018.02.016 [39] Refly S, Floweri O, Mayangsari T R, et al. Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes. ACS Sustainable Chem Eng, 2020, 8(43): 16104 doi: 10.1021/acssuschemeng.0c01006 [40] Zhang X H, Cao H B, Xie Y B, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Sep Purif Technol, 2015, 150: 186 doi: 10.1016/j.seppur.2015.07.003 [41] Chen X P, Fan B L, Xu L P, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. J Clean Prod, 2016, 112: 3562 doi: 10.1016/j.jclepro.2015.10.132 [42] Gao G, Fan D, He X, et al. Acid leaching optimization by response surface to recover valuable metals from spent ternary battery. J Saf Environ, 2020, 20(1): 290高桂蘭, 范丹丹, 賀欣, 等. 采用響應面優化酸浸法回收報廢三元電池中有價金屬的研究. 安全與環境學報. 2020, 20(1): 290 [43] Zheng Y, Wang S Q, Gao Y L, et al. Lithium nickel cobalt manganese oxide recovery via spray pyrolysis directly from the leachate of spent cathode scraps. ACS Appl Energy Mater, 2019, 2(9): 6952 doi: 10.1021/acsaem.9b01647 [44] Song D M, Wang T Y, Liu Z A, et al. Characteristic comparison of leaching valuable metals from spent power Li-ion batteries for vehicles using the inorganic and organic acid system. J Environ Chem Eng, 2022, 10(1): 107102 doi: 10.1016/j.jece.2021.107102 [45] Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater, 2016, 313: 138 doi: 10.1016/j.jhazmat.2016.03.062 [46] Wang C, Wang S B, Yan F, et al. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manag, 2020, 114: 253 doi: 10.1016/j.wasman.2020.07.008 [47] Wang S B, Wang C, Lai F J, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manag, 2020, 102: 122 doi: 10.1016/j.wasman.2019.10.017 [48] Boxall N J, Cheng K Y, Bruckard W, et al. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J Hazard Mater, 2018, 360: 504 doi: 10.1016/j.jhazmat.2018.08.024 [49] Bahaloo-Horeh N, Mousavi S M, Baniasadi M. Use of adapted metal tolerant aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J Clean Prod, 2018, 197: 1546 doi: 10.1016/j.jclepro.2018.06.299 [50] Roy J J, Srinivasan M, Cao B. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density. ACS Sustainable Chem Eng, 2021, 9(8): 3060 doi: 10.1021/acssuschemeng.0c06573 [51] Ying J R, Gao J, Jiang C Y, et al. Research and development of preparing spherical cathode materials for lithium ion batteries by controlled crystallization method. J Inor Mater, 2006, 21(2): 291 doi: 10.3321/j.issn:1000-324X.2006.02.005應皆榮, 高劍, 姜長印, 等. 控制結晶法制備球形鋰離子電池正極材料的研究進展. 無機材料學報, 2006, 21(2):291 doi: 10.3321/j.issn:1000-324X.2006.02.005 [52] Yang Y, Song S L, Jiang F, et al. Short process for regenerating Mn-rich cathode material with high voltage from mixed-type spent cathode materials via a facile approach. J Clean Prod, 2018, 186: 123 doi: 10.1016/j.jclepro.2018.03.147 [53] Yang X, Dong P, Hao T, et al. A combined method of leaching and co-precipitation for recycling spent LiNi0.6Co0.2Mn0.2O2 cathode materials:Process optimization and performance aspects. JOM, 2020, 72(11): 3843 doi: 10.1007/s11837-020-04263-9 [54] Gao R C, Sun C H, Xu L J, et al. Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation. Vacuum, 2020, 173: 109181 doi: 10.1016/j.vacuum.2020.109181 [55] Wu J X, Tan X H, Zhang J T, et al. Improvement of electrochemical performance of nickel rich LiNi0.8Co0.1Mn0.1O2 cathode by lithium aluminatessurface modifications. Energy Technol, 2019, 7(2): 209 doi: 10.1002/ente.201800506 [56] Li L, Bian Y F, Zhang X X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Manag, 2018, 71: 362 doi: 10.1016/j.wasman.2017.10.028 [57] Lu H Q, Zhou H T, Svensson A M, et al. High capacity LiNi0.8Co0.1Mn0.1O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries. Solid State Ion, 2013, 249-250: 105 doi: 10.1016/j.ssi.2013.07.023 [58] Chen X P, Kang D Z, Cao L, et al. Separation and recovery of valuable metals from spent lithium ion batteries: simultaneous recovery of Li and Co in a single step. Sep Purif Technol, 2019, 210: 690 doi: 10.1016/j.seppur.2018.08.072 [59] Chi Z X, Li J, Wang L H, et al. Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues. Green Chem, 2021, 23(22): 9099 doi: 10.1039/D1GC03526F [60] Zhou H M, Zhao X X, Yin C J, et al. Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Electrochimica Acta, 2018, 291: 142 doi: 10.1016/j.electacta.2018.08.134 [61] Shi Y, Chen G, Liu F, et al. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett, 2018, 3(7): 1683 doi: 10.1021/acsenergylett.8b00833 [62] Wang T, Luo H M, Bai Y C, et al. Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv Energy Mater, 2020, 10(30): 2001204 doi: 10.1002/aenm.202001204 [63] Shi Y, Zhang M H, Meng Y S, et al. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv Energy Mater, 2019, 9(20): 1900454 doi: 10.1002/aenm.201900454 [64] Jiang G H, Zhang Y N, Meng Q, et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustainable Chem Eng, 2020, 8(49): 18138 doi: 10.1021/acssuschemeng.0c06514 [65] Georgi M T, Friedrich B, Weyhe R, et al. Development of a recycling process for Li-ion batteries. J Power Sources, 2012, 207: 173 doi: 10.1016/j.jpowsour.2012.01.152 [66] Lv W G, Wang Z H, Cao H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chem Eng, 2018, 6(2): 1504 doi: 10.1021/acssuschemeng.7b03811 [67] Yu X L, Yu S C, Yang Z Z, et al. Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Mater, 2022, 51: 54 doi: 10.1016/j.ensm.2022.06.017 [68] Zhang C F, Wan J J, Li Y X, et al. Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. J Mater Chem A, 2020, 8(14): 6893 doi: 10.1039/D0TA00260G [69] Lv Y T, Cheng X, Qiang W J, et al. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping. J Power Sources, 2020, 450: 227718 doi: 10.1016/j.jpowsour.2020.227718 [70] Zhang Z H, Qiu J H, Yu M, et al. Performance of Al-doped LiNi1/3Co1/3Mn1/3O2 synthesized from spent lithium ion batteries by sol-gel method. Vacuum, 2020, 172: 109105 doi: 10.1016/j.vacuum.2019.109105 [71] Fan X P, Tan C L, Li Y, et al. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. J Hazard Mater, 2021, 410: 124610 doi: 10.1016/j.jhazmat.2020.124610 [72] Abdel-Ghany A, El-Tawil R S, Hashem A M, et al. Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating. Materialia, 2019, 5: 100207 doi: 10.1016/j.mtla.2019.100207 [73] Zhang Y J, Hao T, Huang X S, et al. Synthesis of high performance nano-over-lithiated oxide coated LiNi0.6Co0.2Mn0.2O2 from spent lithium ion batteries. Mater Res Express, 2019, 6(8): 085521 doi: 10.1088/2053-1591/ab209f [74] Jin S, Xu Y X, Liang J Q, et al. A novel coating method for MoO3 to improve the electrochemical performance of regenerated Li(Ni0.8Co0.1Mn0.1)O2 cathode material from spent Li‐ion batteries. ChemistrySelect, 2022, 7(18): e20220812 [75] Meng X Q, Cao H B, Hao J, et al. Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag. ACS Sustainable Chem Eng, 2018, 6(5): 5797 doi: 10.1021/acssuschemeng.7b03880 -