<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

廢舊三元鋰電池正極材料資源化再生的研究進展

王文龍 李蘇 孫靜 江鎮宇 賈平山

王文龍, 李蘇, 孫靜, 江鎮宇, 賈平山. 廢舊三元鋰電池正極材料資源化再生的研究進展[J]. 工程科學學報, 2023, 45(9): 1470-1481. doi: 10.13374/j.issn2095-9389.2022.09.15.002
引用本文: 王文龍, 李蘇, 孫靜, 江鎮宇, 賈平山. 廢舊三元鋰電池正極材料資源化再生的研究進展[J]. 工程科學學報, 2023, 45(9): 1470-1481. doi: 10.13374/j.issn2095-9389.2022.09.15.002
WANG Wenlong, LI Su, SUN Jing, JIANG Zhenyu, JIA Pingshan. Research progress on resource regeneration of spent ternary cathode materials[J]. Chinese Journal of Engineering, 2023, 45(9): 1470-1481. doi: 10.13374/j.issn2095-9389.2022.09.15.002
Citation: WANG Wenlong, LI Su, SUN Jing, JIANG Zhenyu, JIA Pingshan. Research progress on resource regeneration of spent ternary cathode materials[J]. Chinese Journal of Engineering, 2023, 45(9): 1470-1481. doi: 10.13374/j.issn2095-9389.2022.09.15.002

廢舊三元鋰電池正極材料資源化再生的研究進展

doi: 10.13374/j.issn2095-9389.2022.09.15.002
基金項目: 山東大學青年學者未來計劃資助項目(2018WLJH75);山東省自然科學基金面上資助項目(ZR2019MEE035)
詳細信息
    通訊作者:

    E-mail: sunj7@sdu.edu.cn

  • 中圖分類號: X705

Research progress on resource regeneration of spent ternary cathode materials

More Information
  • 摘要: 近些年來,隨著全球新能源汽車和智能電子產品市場的逐漸擴大,鋰離子電池數量急劇增加,從保護生態環境和節約資源的角度來看,開展廢舊鋰電池的回收再生研究具有極大的社會和經濟價值。以三元鋰電池為例,介紹了三元鋰電池正極失效原因以及傳統火法冶金和濕法冶金浸出工藝的回收條件、應用現狀和優缺點,綜述了廢舊三元鋰電池濕法冶金浸出后再生和直接再生的研究進展。基于此,特別論述了再生后的三元鋰電池正極材料通過離子摻雜和表面包覆改性升級的創新策略。最后,展望了廢舊三元鋰電池回收再生工藝的發展前景,以期對廢舊鋰電池回收體系的完善提供一定的參考和建議,形成經濟效益好、綠色環保的鋰電池生產—回收閉路循環回收體系。

     

  • 圖  1  Ni、Co、Mn三種元素含量對三元材料的影響[12]

    Figure  1.  Influence of Ni, Co, and Mn contents on ternary cathode materials[12]

    圖  2  通過溶膠?凝膠(SG)和共沉淀(CP)途徑合成的Li(Ni0.8Co0.1Mn0.1)O2粉末的場發射掃描電鏡(FESEM)圖像[57]

    Figure  2.  FESEM(field emission scanning electron microscopy) images of the Li(Ni0.8Co0.1Mn0.1)O2 powders synthesized via the sol–gel (SG) and coprecipitation (CP) routes[57]

    圖  3  用熔融鹽法補鋰過程的圖示[64]

    Figure  3.  Illustration of the lithium replenishment process by the molten salt method[64]

    圖  4  利用${\text{PO}}_{\text{4}}^{{3-}}$聚陰離子摻雜再生正極材料流程圖[71]

    Figure  4.  Process diagram of the regeneration of cathode material by ${\text{PO}}_{\text{4}\text{}}^{\text{3}{-}}$ polyanion doping[71]

    圖  5  SEM圖像. (a) 原始NCM-V2O5正極材料; (b) 100次循環后的NCM-V2O5 正極材料 [75]

    Figure  5.  SEM images: (a) fresh NCM-V2O5 cathode material; (b) NCM-V2O5 cathode material after 100 cycles[75]

    表  1  火法冶金—濕法冶金聯合回收有價金屬浸出率

    Table  1.   Leaching rates of valuable metals recovered by pyrometallurgy and hydrometallurgy

    Recovery methodLeaching rate/%Reference
    LiNiCoMm
    Graphite reduction roasting and sulfuric acid leaching90.090.097.0[20]
    Carbothermal reduction, carbonated water leaching and sulfuric acid leaching>80.098.096.096.0[21]
    Carbothermal reduction and sulfuric acid leaching93.6793.3398.0898.68[22]
    Carbothermal reduction, carbonated water leaching and sulfuric acid leaching84.7>99.0[23]
    Microwave carbothermal reduction fumaric acid leaching99.6>97. 0[24]
    Carbothermal reduction and carbonic acid water immersion99.2[25]
    Nitrate roasting and water leaching>99. 0[26]
    Chlorination roasting and carbonic acid water leaching>90. 0[27]
    下載: 導出CSV

    表  2  各浸出體系的舉例

    Table  2.   Examples of each leaching system

    TechnologyLeaching systemOptimal conditionLeaching rate/%Reference
    LiNiCoMn
    Acid leachingCitric acid SucroseAmbient temperature 60 min99[39]
    Trichloroacetic acid Hydrogen peroxide60 ℃ 30 min99.793.091.889.8[40]
    Citric acid D-glucose80 ℃ 120 min99919294[41]
    Ascorbic acid69.26 ℃ 59.79 min92.5356.3296.3589.28[42]
    Acetic acid Hydrogen peroxide60 ℃ 60 min>99[43]
    Phosphoric acid Hydrogen peroxide40 ℃ 60 min95.499.899.598.0[44]
    Alkali leachingAmmonia water Ammonium sulfite80 ℃ 1 h 25801[45]
    Ammonia Sodium sulfite80 ℃ 2 h79.185.386.4[46]
    Ammonia water Ammonium chloride Ammonium sulfite150 ℃ 30 min90.398.3100[47]
    BioleachingIron–sulfur-oxidizing bacteria30 ℃ 60 min60.048.753.281.8[48]
    Aspergillus niger30 ℃ 30 days100453872[49]
    Thiobacillus ferrooxidans30 ℃ 24 h89908292[50]
    下載: 導出CSV

    表  3  共沉淀法不同沉淀體系的反應原理

    Table  3.   Reaction principles of different precipitation systems in the coprecipitation method

    TypeReaction principleReference
    Hydroxide coprecipitation$x{\text{Ni} }_{\text{aq} }^{\text{2+} }+{y}{\text{Co} }_{\text{aq} }^{\text{2+} }+{z}{\text{Mn} }_{\text{aq} }^{\text{2+} }+{n}{\text{NH} }_{\text{3} }\cdot{\text{H} }_{\text{2} }{\text{O} }_{\text{aq} }={\left[{\text{Ni} }_{ {x} }{\text{Co} }_{ {y} }{\text{Mn} }_{z}{\left({\text{NH} }_{\text{3} }\right)}_{ {n} }\right]}_{\text{aq} }^{\text{2+} }+{n\text{H} }_{\text{2} }\text{O}$ (x+y+z=1)
    ${\text{[}{\text{Ni} }_{ {x} }{\text{Co} }_{y}{\text{Mn} }_{ {z} }{\text{(}{\text{NH} }_{\text{3} }\text{)} }_{ {n} }\text{]} }_{\text{aq} }^{\text{2+} }+{\text{2OH} }^{ {-} }={\text{Ni} }_{x}{\text{Co} }_{ {y} }{\text{Mn} }_{ {z} }{\text{(OH)} }_{\text{2} }+{ {n}\text{NH} }_{\text{3} }$ (x+y+z=1)
    [52]
    Carbonate coprecipitation${ {x}\text{Ni} }_{\text{aq} }^{\text{2+} }+{ {y}\text{Co} }_{\text{aq} }^{\text{2+} }+{z\text{Mn} }_{\text{aq} }^{\text{2+} }+n\text{NH} _{\text{3} }\cdot{\text{H} }_{\text{2} }{\text{O} }_{\text{aq} }={\left[{\text{Ni} }_{ {x} }{\text{Co} }_{ {y} }{\text{Mn} }_{z}{\left({\text{NH} }_{\text{3} }\right)}_{ {n} }\right]}_{\text{aq} }^{\text{2+} }+{ {n}\text{H} }_{\text{2} }\text{O}$ (x+y+z=1)
    ${\text{[}{\text{Ni} }_{x}{\text{Co} }_{ {y} }{\text{Mn} }_{z}{\text{(}{\text{NH} }_{\text{3} }\text{)} }_{ {n} }\text{]} }_{\text{aq} }^{\text{2+} }+{\text{CO} }_{\text{3} }^{ {2-} }{+}{ {n}\text{H} }_{\text{2} }\text{O=}\left({\text{Ni} }_{ {x} }{\text{Co} }_{ {y} }{\text{Mn} }_{{z} }\right){\text{CO} }_{\text{3} }+{{n}\text{NH} }_{\text{3} }\cdot{\text{H} }_{\text{2} }{\text{O} }_{\text{aq} }$ (x+y+z=1)
    [53]
    Oxalate coprecipitation$\text{4}{\text{H} }_{\text{2} }{\text{C} }_{\text{2} }{\text{O} }_{\text{4} }\text{+2Li}{\text{Ni} }_{{x} }{\text{Co} }_{y}{\text{Mn} }_{{z} }{\text{O} }_{\text{2} }{=2}\left({\text{Ni} }_{{x} }{\text{Co} }_{{y} }{\text{Mn} }_{{z} }\right){\text{C} }_{\text{2} }{\text{O} }_{\text{4} }{+4}{\text{H} }_{\text{2} }\text{O+2C}{\text{O} }_{\text{2} }$ (x+y+z=1)[54]
    下載: 導出CSV

    表  4  傳統濕法冶金、火法冶金和直接再生的優缺點

    Table  4.   Advantages and disadvantages of traditional hydrometallurgy, pyrometallurgy, and direct regeneration

    Recycling methodAdvantagesDisadvantagesReferences
    HydrometallurgyLow-temperature operation
    High material purity
    Low energy consumption
    Complex process
    Secondary acid–base pollution
    Large consumption of chemicals
    [59]
    PyrometallurgySimple process
    Large processing capacity
    High energy consumption
    Low metal recovery
    [65?66]
    Direct regenerationSimple process Low costSingle process at present
    High requirements for battery classification
    [62, 67]
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Xing L, Lin S, Yu J G. Novel recycling approach to regenerate a LiNi0.6Co0.2Mn0.2O2 cathode material from spent lithium-ion batteries. Ind Eng Chem Res, 2021, 60(28): 10303 doi: 10.1021/acs.iecr.1c01151
    [2] Fan E S, Li L, Wang Z P, et al. Sustainable recycling technology for Li-ion batteries and beyond: challenges and future prospects. Chem Rev, 2020, 120(14): 7020 doi: 10.1021/acs.chemrev.9b00535
    [3] Xiao J F, Li J, Xu Z M. Challenges to future development of spent lithium ion batteries recovery from environmental and technological perspectives. Environ Sci Technol, 2020, 54(1): 9 doi: 10.1021/acs.est.9b03725
    [4] Zou H Y, Gratz E, Apelian D, et al. A novel method to recycle mixed cathode materials for lithium ion batteries. Green Chem, 2013, 15(5): 1183 doi: 10.1039/c3gc40182k
    [5] Zhang S J, Zhang Y W, Zhang L W, et al. Present situation and sustainable development strategy of China’s lithium resources. Inorg Chem Ind, 2020, 52(7): 1 doi: 10.11962/1006-4990.2020-0028

    張蘇江, 張彥文, 張立偉, 等. 中國鋰礦資源現狀及其可持續發展策略. 無機鹽工業, 2020, 52(7):1 doi: 10.11962/1006-4990.2020-0028
    [6] Lu Y G, Hao B, Sun K, et al. General situation of cobalt resource and its utilization analysis. Geol Surv Res, 2020, 43(1): 72 doi: 10.3969/j.issn.1672-4135.2020.01.008

    盧宜冠, 郝波, 孫凱, 等. 鈷金屬資源概況與資源利用情況分析. 地質調查與研究, 2020, 43(1):72 doi: 10.3969/j.issn.1672-4135.2020.01.008
    [7] Wei G. Development status and market analysis of nickel industry in China. China Nonferrous Met, 2020(14): 44 doi: 10.3969/j.issn.1673-3894.2020.14.011

    魏國. 我國鎳產業發展現狀及市場分析. 中國有色金屬, 2020(14):44 doi: 10.3969/j.issn.1673-3894.2020.14.011
    [8] Liang R, Wu Z Y, Yang W M, et al. A simple one-step molten salt method for synthesis of micron-sized single primary particle LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Ionics, 2020, 26(4): 1635 doi: 10.1007/s11581-020-03500-0
    [9] Wang J, Liang J, Li H, et al. Status and prospects of treatment methods for valuable metals in spent lithium-ion battery. Hot Work Technol, 2018, 47(22): 12 doi: 10.14158/j.cnki.1001-3814.2018.22.003

    王晶, 梁精龍, 李慧, 等. 廢舊鋰電池中有價金屬的處理方法現狀及展望. 熱加工工藝, 2018, 47(22):12 doi: 10.14158/j.cnki.1001-3814.2018.22.003
    [10] Fey G T K, Chang C S, Kumar T P. Synthesis and surface treatment of LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries. J Solid State Electrochem, 2010, 14(1): 17 doi: 10.1007/s10008-008-0772-3
    [11] Yoshio M, Noguchi H, Itoh J I, et al. Preparation and properties of LiCoyMnxNi1?x?yO2 as a cathode for lithium ion batteries. J Power Sources, 2000, 90(2): 176 doi: 10.1016/S0378-7753(00)00407-9
    [12] Noh H J, Youn S, Yoon C S, et al. Comparison of the structural and electrochemical properties of layered LiNixCoyMnzO2 (x=1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources, 2013, 233: 121
    [13] Li W D, Liu X M, Celio H, et al. Mn versus Al in layered oxide cathodes in lithium-ion batteries: A comprehensive evaluation on long-term cyclability. Adv Energy Mater, 2018, 8(15): 1703154 doi: 10.1002/aenm.201703154
    [14] Ryu H H, Park K J, Yoon C S, et al. Capacity fading of Ni-rich Li [NixCoyMn1–xy]O2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-ion batteries: Bulk or surface degradation? Chem Mater, 2018, 30(3): 1155
    [15] Mu L Q, Yuan Q X, Tian C X, et al. Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials. Nat Commun, 2018, 9(1): 2810 doi: 10.1038/s41467-018-05172-x
    [16] Sayilgan E, Kukrer T, Civelekoglu G, et al. A review of technologies for the recovery of metals from spent alkaline and zinc-carbon batteries. Hydrometallurgy, 2009, 97(3-4): 158 doi: 10.1016/j.hydromet.2009.02.008
    [17] Pindar S, Dhawan N. Comparison of microwave and conventional indigenous carbothermal reduction for recycling of discarded lithium-ion batteries. Trans Indian Inst Met, 2020, 73(8): 2041 doi: 10.1007/s12666-020-01956-2
    [18] Zhao Y Z, Liu B G, Zhang L B, et al. Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling. J Hazard Mater, 2020, 384: 121487 doi: 10.1016/j.jhazmat.2019.121487
    [19] Gao G L, He X, Li Y G, et al. Current status of recycling technology of spent automotive lithium-ion batteries. Environ Eng, 2017, 35(10): 135 doi: 10.13205/j.hjgc.201710028

    高桂蘭, 賀欣, 李亞光, 等. 廢舊車用動力鋰離子電池的回收利用現狀. 環境工程, 2017, 35(10):135 doi: 10.13205/j.hjgc.201710028
    [20] Zhang Y C, Wang W Q, Fang Q, et al. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching. Waste Manag, 2020, 102: 847 doi: 10.1016/j.wasman.2019.11.045
    [21] Zhang J L, Hu J T, Zhang W J, et al. Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries. J Clean Prod, 2018, 204: 437 doi: 10.1016/j.jclepro.2018.09.033
    [22] Liu P C, Xiao L, Tang Y W, et al. Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials. J Therm Anal Calorim, 2019, 136(3): 1323 doi: 10.1007/s10973-018-7732-7
    [23] Hu J T, Zhang J L, Li H X, et al. A promising approach for the recovery of high value-added metals from spent lithium-ion batteries. J Power Sources, 2017, 351: 192 doi: 10.1016/j.jpowsour.2017.03.093
    [24] Fu Y P, He Y Q, Li J L, et al. Improved hydrometallurgical extraction of valuable metals from spent lithium-ion batteries via a closed-loop process. J Alloys Compd, 2020, 847: 156489 doi: 10.1016/j.jallcom.2020.156489
    [25] Zhao Y Z, Liu B G, Zhang L B, et al. Microwave pyrolysis of macadamia shells for efficiently recycling lithium from spent lithium-ion batteries. J Hazard Mater, 2020, 396: 122740 doi: 10.1016/j.jhazmat.2020.122740
    [26] Peng C, Liu F P, Wang Z L, et al. Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. J Power Sources, 2019, 415: 179 doi: 10.1016/j.jpowsour.2019.01.072
    [27] Fan E S, Li L, Lin J, et al. Low-temperature molten-salt-assisted recovery of valuable metals from spent lithium-ion batteries. ACS Sustainable Chem Eng, 2019, 7(19): 16144 doi: 10.1021/acssuschemeng.9b03054
    [28] Ministry of Industry and Information Technology. Industry specifications for comprehensive utilization of waste power batteries for new energy vehicles (2019 Version). Recycl Resour Circ Econ, 2020, 13(01): 1 doi: 10.3969/j.issn.1674-0912.2020.01.001

    工業和信息化部. 新能源汽車廢舊動力蓄電池綜合利用行業規范條件(2019年本). 再生資源與循環經濟, 2020, 13(01):1 doi: 10.3969/j.issn.1674-0912.2020.01.001
    [29] Tao R, Xing P, Li H Q, et al. Full-component pyrolysis coupled with reduction of cathode material for recovery of spent LiNixCoyMnzO2 lithium-ion batteries. ACS Sustainable Chem Eng, 2021, 9(18): 6318 doi: 10.1021/acssuschemeng.1c00210
    [30] Cheng X Y, Guo G H, Cheng Y K, et al. Effect of hydrogen peroxide on the recovery of valuable metals from spent LiNi0.6Co0.2Mn0.2O2 batteries. Energy Tech, 2022, 10(4): 2200039 doi: 10.1002/ente.202200039
    [31] Higuchi A, Ankei N, Nishihama S, et al. Selective recovery of lithium from cathode materials of spent lithium ion battery. JOM, 2016, 68(10): 2624 doi: 10.1007/s11837-016-2027-6
    [32] Fu Y P, He Y Q, Yang Y, et al. Microwave reduction enhanced leaching of valuable metals from spent lithium-ion batteries. J Alloys Compd, 2020, 832: 154920 doi: 10.1016/j.jallcom.2020.154920
    [33] Or T, Gourley S W D, Kaliyappan K, et al. Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook. Carbon Energy, 2020, 2(1): 6 doi: 10.1002/cey2.29
    [34] Zhang X X, Li L, Fan E S, et al. Toward sustainable and systematic recycling of spent rechargeable batteries. Chem Soc Rev, 2018, 47(19): 7239 doi: 10.1039/C8CS00297E
    [35] Refly S, Floweri O, Mayangsari T R, et al. Green recycle processing of cathode active material from LiNi1/3Co1/3Mn1/3O2 (NCM111) battery waste through citric acid leaching and oxalate co-precipitation process. Mater Today Proc, 2021, 44: 3378 doi: 10.1016/j.matpr.2020.11.664
    [36] Shen B, Gu W X, Yuan H P, et al. A review on leaching and purification technologies of spent ternary Li-ion batteries. Environ Sci Technol, 2018, 41(2): 114 doi: 10.19672/j.cnki.1003-6504.2018.02.017

    沈棒, 顧衛星, 袁海平, 等. 廢舊三元鋰離子電池浸出及純化技術研究進展. 環境科學與技術, 2018, 41(2):114 doi: 10.19672/j.cnki.1003-6504.2018.02.017
    [37] Moazzam P, Boroumand Y, Rabiei P, et al. Lithium bioleaching: An emerging approach for the recovery of Li from spent lithium ion batteries. Chemosphere, 2021, 277: 130196 doi: 10.1016/j.chemosphere.2021.130196
    [38] Zou C, Pan J L, Liu W Q, et al. Progress in hydrometallurgical process for recycling ternary cathode material of Li-ion battery. Battery Bimon, 2018, 48(2): 130 doi: 10.19535/j.1001-1579.2018.02.016

    鄒超, 潘君麗, 劉維橋, 等. 濕法回收鋰離子電池三元正極材料的進展. 電池, 2018, 48(2):130 doi: 10.19535/j.1001-1579.2018.02.016
    [39] Refly S, Floweri O, Mayangsari T R, et al. Regeneration of LiNi1/3Co1/3Mn1/3O2 cathode active materials from end-of-life lithium-ion batteries through ascorbic acid leaching and oxalic acid coprecipitation processes. ACS Sustainable Chem Eng, 2020, 8(43): 16104 doi: 10.1021/acssuschemeng.0c01006
    [40] Zhang X H, Cao H B, Xie Y B, et al. A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis. Sep Purif Technol, 2015, 150: 186 doi: 10.1016/j.seppur.2015.07.003
    [41] Chen X P, Fan B L, Xu L P, et al. An atom-economic process for the recovery of high value-added metals from spent lithium-ion batteries. J Clean Prod, 2016, 112: 3562 doi: 10.1016/j.jclepro.2015.10.132
    [42] Gao G, Fan D, He X, et al. Acid leaching optimization by response surface to recover valuable metals from spent ternary battery. J Saf Environ, 2020, 20(1): 290

    高桂蘭, 范丹丹, 賀欣, 等. 采用響應面優化酸浸法回收報廢三元電池中有價金屬的研究. 安全與環境學報. 2020, 20(1): 290
    [43] Zheng Y, Wang S Q, Gao Y L, et al. Lithium nickel cobalt manganese oxide recovery via spray pyrolysis directly from the leachate of spent cathode scraps. ACS Appl Energy Mater, 2019, 2(9): 6952 doi: 10.1021/acsaem.9b01647
    [44] Song D M, Wang T Y, Liu Z A, et al. Characteristic comparison of leaching valuable metals from spent power Li-ion batteries for vehicles using the inorganic and organic acid system. J Environ Chem Eng, 2022, 10(1): 107102 doi: 10.1016/j.jece.2021.107102
    [45] Ku H, Jung Y, Jo M, et al. Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching. J Hazard Mater, 2016, 313: 138 doi: 10.1016/j.jhazmat.2016.03.062
    [46] Wang C, Wang S B, Yan F, et al. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate. Waste Manag, 2020, 114: 253 doi: 10.1016/j.wasman.2020.07.008
    [47] Wang S B, Wang C, Lai F J, et al. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts. Waste Manag, 2020, 102: 122 doi: 10.1016/j.wasman.2019.10.017
    [48] Boxall N J, Cheng K Y, Bruckard W, et al. Application of indirect non-contact bioleaching for extracting metals from waste lithium-ion batteries. J Hazard Mater, 2018, 360: 504 doi: 10.1016/j.jhazmat.2018.08.024
    [49] Bahaloo-Horeh N, Mousavi S M, Baniasadi M. Use of adapted metal tolerant aspergillus niger to enhance bioleaching efficiency of valuable metals from spent lithium-ion mobile phone batteries. J Clean Prod, 2018, 197: 1546 doi: 10.1016/j.jclepro.2018.06.299
    [50] Roy J J, Srinivasan M, Cao B. Bioleaching as an eco-friendly approach for metal recovery from spent NMC-based lithium-ion batteries at a high pulp density. ACS Sustainable Chem Eng, 2021, 9(8): 3060 doi: 10.1021/acssuschemeng.0c06573
    [51] Ying J R, Gao J, Jiang C Y, et al. Research and development of preparing spherical cathode materials for lithium ion batteries by controlled crystallization method. J Inor Mater, 2006, 21(2): 291 doi: 10.3321/j.issn:1000-324X.2006.02.005

    應皆榮, 高劍, 姜長印, 等. 控制結晶法制備球形鋰離子電池正極材料的研究進展. 無機材料學報, 2006, 21(2):291 doi: 10.3321/j.issn:1000-324X.2006.02.005
    [52] Yang Y, Song S L, Jiang F, et al. Short process for regenerating Mn-rich cathode material with high voltage from mixed-type spent cathode materials via a facile approach. J Clean Prod, 2018, 186: 123 doi: 10.1016/j.jclepro.2018.03.147
    [53] Yang X, Dong P, Hao T, et al. A combined method of leaching and co-precipitation for recycling spent LiNi0.6Co0.2Mn0.2O2 cathode materials:Process optimization and performance aspects. JOM, 2020, 72(11): 3843 doi: 10.1007/s11837-020-04263-9
    [54] Gao R C, Sun C H, Xu L J, et al. Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation. Vacuum, 2020, 173: 109181 doi: 10.1016/j.vacuum.2020.109181
    [55] Wu J X, Tan X H, Zhang J T, et al. Improvement of electrochemical performance of nickel rich LiNi0.8Co0.1Mn0.1O2 cathode by lithium aluminatessurface modifications. Energy Technol, 2019, 7(2): 209 doi: 10.1002/ente.201800506
    [56] Li L, Bian Y F, Zhang X X, et al. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching. Waste Manag, 2018, 71: 362 doi: 10.1016/j.wasman.2017.10.028
    [57] Lu H Q, Zhou H T, Svensson A M, et al. High capacity LiNi0.8Co0.1Mn0.1O2 synthesized by sol-gel and co-precipitation methods as cathode materials for lithium-ion batteries. Solid State Ion, 2013, 249-250: 105 doi: 10.1016/j.ssi.2013.07.023
    [58] Chen X P, Kang D Z, Cao L, et al. Separation and recovery of valuable metals from spent lithium ion batteries: simultaneous recovery of Li and Co in a single step. Sep Purif Technol, 2019, 210: 690 doi: 10.1016/j.seppur.2018.08.072
    [59] Chi Z X, Li J, Wang L H, et al. Direct regeneration method of spent LiNi1/3Co1/3Mn1/3O2 cathode materials via surface lithium residues. Green Chem, 2021, 23(22): 9099 doi: 10.1039/D1GC03526F
    [60] Zhou H M, Zhao X X, Yin C J, et al. Regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. Electrochimica Acta, 2018, 291: 142 doi: 10.1016/j.electacta.2018.08.134
    [61] Shi Y, Chen G, Liu F, et al. Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes. ACS Energy Lett, 2018, 3(7): 1683 doi: 10.1021/acsenergylett.8b00833
    [62] Wang T, Luo H M, Bai Y C, et al. Direct recycling of spent NCM cathodes through ionothermal lithiation. Adv Energy Mater, 2020, 10(30): 2001204 doi: 10.1002/aenm.202001204
    [63] Shi Y, Zhang M H, Meng Y S, et al. Ambient-pressure relithiation of degraded LixNi0.5Co0.2Mn0.3O2 (0 < x < 1) via eutectic solutions for direct regeneration of lithium-ion battery cathodes. Adv Energy Mater, 2019, 9(20): 1900454 doi: 10.1002/aenm.201900454
    [64] Jiang G H, Zhang Y N, Meng Q, et al. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode from spent lithium-ion batteries by the molten salts method. ACS Sustainable Chem Eng, 2020, 8(49): 18138 doi: 10.1021/acssuschemeng.0c06514
    [65] Georgi M T, Friedrich B, Weyhe R, et al. Development of a recycling process for Li-ion batteries. J Power Sources, 2012, 207: 173 doi: 10.1016/j.jpowsour.2012.01.152
    [66] Lv W G, Wang Z H, Cao H B, et al. A critical review and analysis on the recycling of spent lithium-ion batteries. ACS Sustainable Chem Eng, 2018, 6(2): 1504 doi: 10.1021/acssuschemeng.7b03811
    [67] Yu X L, Yu S C, Yang Z Z, et al. Achieving low-temperature hydrothermal relithiation by redox mediation for direct recycling of spent lithium-ion battery cathodes. Energy Storage Mater, 2022, 51: 54 doi: 10.1016/j.ensm.2022.06.017
    [68] Zhang C F, Wan J J, Li Y X, et al. Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping. J Mater Chem A, 2020, 8(14): 6893 doi: 10.1039/D0TA00260G
    [69] Lv Y T, Cheng X, Qiang W J, et al. Improved electrochemical performances of Ni-rich LiNi0.83Co0.12Mn0.05O2 by Mg-doping. J Power Sources, 2020, 450: 227718 doi: 10.1016/j.jpowsour.2020.227718
    [70] Zhang Z H, Qiu J H, Yu M, et al. Performance of Al-doped LiNi1/3Co1/3Mn1/3O2 synthesized from spent lithium ion batteries by sol-gel method. Vacuum, 2020, 172: 109105 doi: 10.1016/j.vacuum.2019.109105
    [71] Fan X P, Tan C L, Li Y, et al. A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries. J Hazard Mater, 2021, 410: 124610 doi: 10.1016/j.jhazmat.2020.124610
    [72] Abdel-Ghany A, El-Tawil R S, Hashem A M, et al. Improved electrochemical performance of LiNi0.5Mn0.5O2 by Li-enrichment and AlF3 coating. Materialia, 2019, 5: 100207 doi: 10.1016/j.mtla.2019.100207
    [73] Zhang Y J, Hao T, Huang X S, et al. Synthesis of high performance nano-over-lithiated oxide coated LiNi0.6Co0.2Mn0.2O2 from spent lithium ion batteries. Mater Res Express, 2019, 6(8): 085521 doi: 10.1088/2053-1591/ab209f
    [74] Jin S, Xu Y X, Liang J Q, et al. A novel coating method for MoO3 to improve the electrochemical performance of regenerated Li(Ni0.8Co0.1Mn0.1)O2 cathode material from spent Li‐ion batteries. ChemistrySelect, 2022, 7(18): e20220812
    [75] Meng X Q, Cao H B, Hao J, et al. Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag. ACS Sustainable Chem Eng, 2018, 6(5): 5797 doi: 10.1021/acssuschemeng.7b03880
  • 加載中
圖(5) / 表(4)
計量
  • 文章訪問數:  482
  • HTML全文瀏覽量:  194
  • PDF下載量:  143
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-09-15
  • 網絡出版日期:  2022-11-09
  • 刊出日期:  2023-09-25

目錄

    /

    返回文章
    返回