Effect of Ca/Fe additives on solution loss reactions of cokes in H2O+CO2 atmosphere
-
摘要: 為了探究富氫高爐內Ca/Fe基高反應性焦炭的溶損反應特性,以CO2(N2)載帶不同摩爾比例H2O蒸氣(0~30%)進行焦炭溶損實驗,通過分析尾氣中CO和H2的含量,研究Ca/Fe添加劑對焦炭在H2O+CO2混合氣氛下碳溶反應和水煤氣反應的影響。研究表明,焦炭在H2O+CO2和H2O+N2兩種氣氛下的焦炭反應性隨H2O蒸氣載帶率增加呈線性關系,焦炭在H2O+CO2氣氛中溶損反應的擬合斜率k值明顯小于在H2O+N2氣氛中的k值,H2O+CO2混合氣氛中H2O和CO2與焦炭反應存在競爭關系。而且基礎焦炭(BC)反應性的實驗與理論的差值明顯小于Ca/Fe基焦炭(BC+Ca、BC+Fe)的差值,表明Ca/Fe添加劑影響了CO2和H2O與焦炭共同反應時的競爭關系。基于兩種氣氛下速率常數的差異提煉了兩個抑制因子αCO2/H2O和αH2O/CO2,αCO2/H2O定量表征CO2對C+H2O反應的抑制程度,αCO2/H2O定量表征H2O對C+CO2反應的抑制程度,BC、BC+Fe、BC+Ca三種焦炭的αCO2/H2O分別為0.260、0.251、0.170,而αH2O/CO2分別為0.121、0.217、0.263,Ca/Fe添加劑降低了αCO2/H2O而提高了αH2O/CO2,說明Ca/Fe添加劑能夠減小CO2對C+H2O反應的抑制程度,顯著增強C+H2O反應的活性。Ca/Fe基焦炭中催化活性物質為鐵酸鈣和硅鋁酸鈣,Ca/Fe元素在焦炭中賦存形式的不同導致了Ca/Fe添加劑對焦炭溶損反應催化效果的差異性。Abstract: To examine the solution loss reaction properties of cokes with Ca/Fe additives in a hydrogen-rich blast furnace, the solution loss reactions of cokes were performed using a CO2 (N2) carrier gas with various percentages (0–30%) of H2O vapor, and the effect of Ca/Fe additives on the Boudouard reaction (C + CO2 = 2CO) and water–gas reaction (C + H2O = CO + H2) of cokes in a H2O + CO2 atmosphere was studied by examining the content of CO and H2 in the off-gas. The results demonstrate that the coke reactivity has a positive linear relationship with the percentages of H2O vapor in H2O + CO2 and H2O + N2 atmospheres, and the fitting slope k could be used to characterize the rate constant for the solution loss reaction of cokes in H2O + CO2 and H2O + N2 atmospheres. The k value for the solution loss reaction of the coke in the H2O + CO2 atmosphere is smaller than that of the coke in the H2O + N2 atmosphere, which shows that there is a competition between the reactions of H2O and CO2 with cokes in the H2O + CO2 atmosphere. Furthermore, the experimental reactivities of coke are smaller than their theoretical reactivities in the H2O + CO2 atmosphere, and the difference between the experimental and theoretical reactivities of the basic coke (BC) is less than those of the cokes with Ca/Fe additives (BC + Ca, BC + Fe), which shows that the Ca/Fe additives affect the competitive relationship of the reactions of CO2 and H2O with coke. Two inhibition factors, αCO2/H2O and αH2O/CO2, are proposed to measure the degree of inhibition based on the difference in the k value for the cokes in H2O + CO2 and H2O + N2 atmospheres. The inhibition factor αCO2/H2O could quantitatively characterize the inhibition degree of CO2 on C + H2O reaction in the H2O + CO2 atmosphere, and the inhibition factor αH2O/CO2 could quantitatively characterize the inhibition degree of H2O on the C + CO2 reaction in the H2O + CO2 atmosphere. The αCO2/H2O factors of BC, BC + Fe, and BC + Ca cokes are 0.260, 0.251, and 0.170, respectively, and the αH2O/CO2 factors of BC, BC + Fe, and BC + Ca are 0.121, 0.217, and 0.263, respectively. The Ca/Fe additives in cokes reduce the αCO2/H2O factor and increase the αH2O/CO2 factor, showing that Ca/Fe additives can attenuate the inhibition degree of CO2 on the C + H2O reaction and improve the activity of the C + H2O reaction, and the Ca additive has a greater impact on the competitive relationship between the reactions of CO2 and H2O with coke than the Fe additive. The catalytically active substances in Ca/Fe additives in cokes could be CaFe2O4 and Ca2Al2SiO7, and the difference in the existing states of Ca/Fe elements in cokes causes the difference in the catalytic effect of Ca/Fe additives on the solution loss reactions of cokes.
-
Key words:
- coke /
- Ca/Fe additives /
- solution loss reaction /
- H2O + CO2 atmosphere /
- catalysis /
- inhibition factor
-
表 1 配合煤樣性質指標
Table 1. Main characteristics of the blending coals
Mad/% Ad/% Vad/% St,d/% G Y/mm b/% Rmax/% A/I 0.94 9.93 21.50 1.05 86.3 15.5 12 1.39 2.25 表 2 焦炭的工業分析和熱性質
Table 2. Proximate analysis and thermal properties of cokes %
Coke Mad Aad Vad St,ad CRI CSR BC 0.07 12.3 0.9 1.0 22.24 63.39 BC + Fe 0.10 13.2 0.7 0.7 28.52 53.23 BC + Ca 0.09 13.4 1.2 0.8 39.26 36.94 表 3 H2O+CO2混合氣氛中焦炭反應性的實驗值與理論值
Table 3. Experimental and theoretical values of coke reactivity in the H2O + CO2 atmosphere
Coke xH2O /% PRIexp /% PRIcal /% BC 0 17.24 17.24 10 18.90 24.19 20 20.80 28.44 30 22.44 32.34 BC + Fe 0 26.44 26.44 10 27.65 33.64 20 30.33 40.48 30 31.70 45.04 BC + Ca 0 34.85 34.85 10 37.40 43.45 20 38.50 47.40 30 41.07 53.61 表 4 H2O與CO2與焦炭反應的相互抑制因子
Table 4. Inhibition factors of the reactions of H2O and CO2 with cokes
Coke k1′ k1 αCO2/H2O k2′ k2 αH2O/CO2 BC 0.548 0.288 0.260 0 ?0.121 0.121 BC + Fe 0.651 0.400 0.251 0 ?0.217 0.217 BC + Ca 0.636 0.466 0.170 0 ?0.263 0.263 259luxu-164 -
參考文獻
[1] Yang T J, Zhang J L, Liu Z J, et al. Development of ironmaking industry at the new situation. Ironmaking, 2020, 39(5): 1楊天鈞, 張建良, 劉征建, 等. 關于新形勢下煉鐵工業發展的認識. 煉鐵, 2020, 39(5):1 [2] Gao J J, Qi Y H, Yan D L, et al. Development path and key technical problems of low carbon ironmaking in China. China Metall, 2021, 31(9): 64高建軍, 齊淵洪, 嚴定鎏, 等. 中國低碳煉鐵技術的發展路徑與關鍵技術問題. 中國冶金, 2021, 31(9):64 [3] Zhang Q, Shen J L, Xu L S. Carbon peak and low-carbon transition path of China’s iron and steel industry. Iron Steel, 2021, 56(10): 152張琦, 沈佳林, 許立松. 中國鋼鐵工業碳達峰及低碳轉型路徑. 鋼鐵, 2021, 56(10):152 [4] Zhang L Q, Chen J. Discussion on achieving “carbon peak” and suggestions for reducing carbon in iron and steel industry. China Metall, 2021, 31(9): 21張龍強, 陳劍. 鋼鐵工業實現“碳達峰”探討及減碳建議. 中國冶金, 2021, 31(9):21 [5] Yan J J. Progress and future of ultra-low CO2 steel making program. China Metall, 2017, 27(2): 6嚴珺潔. 超低二氧化碳排放煉鋼項目的進展與未來. 中國冶金, 2017, 27(2):6 [6] Wang M, Ren R X, Dong H W, et al. Latest technology of melting reduction ironmaking process and discussion of process route choice. Iron Steel, 2020, 55(8): 145王敏, 任榮霞, 董洪旺, 等. 熔融還原煉鐵最新技術及工藝路線選擇探討. 鋼鐵, 2020, 55(8):145 [7] Zhang S R, Zhang S X. FINEX process at POSCO steel corporation in Korea. Iron Steel, 2009, 44(5): 1張壽榮, 張紹賢. 韓國浦項鋼鐵公司FINEX工藝. 鋼鐵, 2009, 44(5):1 [8] Wang H Y, Zhang J L, Wang G W, et al. Analysis of carbon dioxide emission reduction before ironmaking. China Metall, 2018, 28(1): 1王海洋, 張建良, 王廣偉, 等. 鐵前系統的二氧化碳減排技術淺析. 中國冶金, 2018, 28(1):1 [9] Li B Z, Dong H W. Green development direction of blast furnace ironmaking technology. Hebei Metall, 2020(Suppl 1): 1李寶忠, 董洪旺. 綠色高爐煉鐵技術發展方向. 河北冶金, 2020(增刊 1):1 [10] Bi C G, Tang J, Chu M S. Mathematical modeling of Mei Steel No. 2 BF with coke oven gas injection. Iron Steel, 2018, 53(4): 89畢傳光, 唐玨, 儲滿生. 梅鋼2號高爐噴吹焦爐煤氣數值模擬. 鋼鐵, 2018, 53(4):89 [11] Qie Y N, Lyu Q, Li J P, et al. Effect of hydrogen addition on reduction kinetics of iron oxides in gas-injection BF. ISIJ Int, 2017, 57(3): 404 doi: 10.2355/isijinternational.ISIJINT-2016-356 [12] Guo T L, Chu M S, Liu Z G, et al. Numerical simulation of blast furnace raceway under natural gas injection // Collected Works of 2012 National Iron Making Production Technology Conference and Iron Making Academic Annual Meeting (Part II). Wuxi, 2012: 52郭同來, 儲滿生, 柳政根, 等. 高爐噴吹天然氣風口回旋區的數學模擬 // 2012年全國煉鐵生產技術會議暨煉鐵學術年會文集(下). 無錫, 2012: 52 [13] Xu R S, Dai B W, Wang W, et al. Gasification reactivity and structure evolution of metallurgical coke under H2O/CO2 atmosphere. Energy Fuels, 2018, 32(2): 1188 doi: 10.1021/acs.energyfuels.7b03023 [14] Numazawa Y, Hara Y, Matsukawa Y, et al. Kinetic modeling of CO2 and H2O gasification reactions for metallurgical coke using a distributed activation energy model. ACS Omega, 2021, 6(17): 11436 doi: 10.1021/acsomega.1c00443 [15] Wang P, Zhang Y Q, Long H M, et al. Degradation behavior of coke reacting with H2O and CO2 at high temperature. ISIJ Int, 2017, 57(4): 643 doi: 10.2355/isijinternational.ISIJINT-2016-488 [16] Guo W T, Xue Q G, Liu Y L, et al. Kinetic analysis of gasification reaction of coke with CO2 or H2O. Int J Hydrog Energy, 2015, 40(39): 13306 doi: 10.1016/j.ijhydene.2015.07.048 [17] Zhao Q Q, Xue Q G, She X F, et al. Study on kinetics of solution loss reaction of coke with H2O and CO2. Chin J Process Eng, 2012, 12(5): 789趙晴晴, 薛慶國, 佘雪峰, 等. H2O和CO2對焦炭溶損反應動力學的研究. 過程工程學報, 12(5): 789 [18] Wang W, Dai B W, Xu R S, et al. The effect of H2O on the reactivity and microstructure of metallurgical coke. Steel Res Int, 2017, 88(8): 1700063 doi: 10.1002/srin.201700063 [19] Lan C C, Zhang S H, Liu X J, et al. Kinetic behaviors of coke gasification with CO2 and H2O. ISIJ Int, 2021, 61(1): 167 doi: 10.2355/isijinternational.ISIJINT-2020-401 [20] Chang Z Y, Wang P, Zhang J L, et al. Effect of CO2 and H2O on gasification dissolution and deep reaction of coke. Int J Miner Metall Mater, 2018, 25(12): 1402 doi: 10.1007/s12613-018-1694-4 [21] Nomura S, Kitaguchi H, Yamaguchi K, et al. The characteristics of catalyst-coated highly reactive coke. ISIJ Int, 2007, 47(2): 245 doi: 10.2355/isijinternational.47.245 [22] Nomura S, Ayukawa H, Ktaguchi H, et al. Improvement in blast furnace reaction efficiency through the use of highly reactive calcium rich coke. ISIJ Int, 2005, 45(3): 316 doi: 10.2355/isijinternational.45.316 [23] Sharma A, Uebo K, Kubota Y. Role of Fe2O3 and CaCO3 on the development of carbon structure of coke and their catalytic activity for gasification. Tetsu-to-Hagane, 2010, 96(5): 280 doi: 10.2355/tetsutohagane.96.280 [24] Nomura S, Terashima H, Sato E, et al. Some fundamental aspects of highly reactive iron coke production. ISIJ Int, 2007, 47(6): 823 doi: 10.2355/isijinternational.47.823 [25] Nomura S. Reaction behavior of Ca-loaded highly reactive coke. ISIJ Int, 2014, 54(11): 2533 doi: 10.2355/isijinternational.54.2533 [26] Nomura S, Naito M, Yamaguchi K. The post-reaction strength of catalyst-doped highly reactive coke. Tetsu-to-Hagane, 2007, 93(1): 9 doi: 10.2355/tetsutohagane.93.9 [27] Nomura S, Naito M, Yamaguchi K. Post-reaction strength of catalyst-added highly reactive coke. ISIJ Int, 2007, 47(6): 831 doi: 10.2355/isijinternational.47.831 [28] Ueda S, Watanabe K, Inoue R, et al. Catalytic effect of Fe, CaO and molten oxide on the gasification reaction of coke and biomass char. ISIJ Int, 2011, 51(8): 1262 doi: 10.2355/isijinternational.51.1262 [29] Kashiwaya Y, Nakaya S, Ishii K. Effect of Fe addition on coke gasification. Tetsu-to-Hagane, 1991, 77(6): 759 doi: 10.2355/tetsutohagane1955.77.6_759 [30] Zuo H B, Rong Y, Zhang J L, et al. Effect of CaO on properties of coke. Iron Steel, 2014, 49(1): 7左海濱, 戎妍, 張建良, 等. 氧化鈣對焦炭性能的影響. 鋼鐵, 2014, 49(1):7 [31] Zhang J L, Guo J, Wang G W, et al. Effect of iron ore fines addition on microstructure and properties of iron-coke. Iron Steel, 2016, 51(9): 22張建良, 郭建, 王廣偉, 等. 配加鐵礦粉對鐵焦微觀結構及性能的影響. 鋼鐵, 2016, 51(9):22 [32] Guo H, Zhang J L, Ma H, et al. Influence of compound of alkali earth metals on coke reactivity. Iron Steel, 2009, 44(2): 15郭豪, 張建良, 馬歡, 等. 堿土金屬化合物對焦炭反應性的影響. 鋼鐵, 2009, 44(2):15 [33] Sun Z, Li P, Guo R, et al. Preparation of high strength and highly reactive coke by the addition of steel slag. Coke Chem, 2014, 57(10): 391 doi: 10.3103/S1068364X14100081 [34] Li P, Sun Z, Cui W Q, et al. Effect of slag on thermal properties of coke. Coal Convers, 2014, 37(2): 47李鵬, 孫章, 崔文權, 等. 鋼渣對焦炭熱性能的影響. 煤炭轉化, 2014, 37(2):47 [35] Liang L, Sun Z, Liang Y H. Evolution of the porous structures for the high reactivity coke prepared by adding steel slag in blending coals during solution loss reaction. Chem Ind Eng Prog, 2019, 38(7): 3136梁磊, 孫章, 梁英華. 鋼渣基高反應性焦炭氣孔結構的溶損演化行為. 化工進展, 2019, 38(7):3136 [36] Sun Z, Liu P F, Li H X, et al. Effect of blending of Ca-based slag on solution loss reaction of coke. Chin J Process Eng, 2015, 15(6): 999 doi: 10.12034/j.issn.1009-606X.215216孫章, 劉朋飛, 李慧星, 等. 富鈣廢渣配煤對焦炭溶損反應的影響. 過程工程學報, 2015, 15(6):999 doi: 10.12034/j.issn.1009-606X.215216 [37] Liu P F, Sun Z, Wang J P, et al. Improving coke reactivity by adding soda residue. Coal Convers, 2015, 38(3): 65劉朋飛, 孫章, 王杰平, 等. 堿渣作為添加劑提高焦炭反應性的研究. 煤炭轉化, 2015, 38(3):65 [38] Gao M Q, Lv P, Yang Z R, et al. Effects of Ca/Na compounds on coal gasification reactivity and char characteristics in H2O/CO2 mixtures. Fuel, 2017, 206: 107 doi: 10.1016/j.fuel.2017.05.079 [39] Gao M Q, Yang Z R, Wang Y L, et al. Impact of calcium on the synergistic effect for the reactivity of coal char gasification in H2O/CO2 mixtures. Fuel, 2017, 189: 312 doi: 10.1016/j.fuel.2016.10.100 [40] Yu G, Yu D X, Liu F Q, et al. Different impacts of magnesium on the catalytic activity of exchangeable calcium in coal gasification with CO2 and steam. Fuel, 2020, 266: 117050 doi: 10.1016/j.fuel.2020.117050 [41] Yu G, Yu D X, Liu F Q, et al. Different catalytic action of ion-exchanged calcium in steam and CO2 gasification and its effects on the evolution of char structure and reactivity. Fuel, 2019, 254: 115609 doi: 10.1016/j.fuel.2019.06.017 [42] Ohtsuka Y, Asami K. Highly active catalysts from inexpensive raw materials for coal gasification. Catal Today, 1997, 39(1-2): 111 doi: 10.1016/S0920-5861(97)00093-X [43] Ohtsuka Y, Tomita A. Calcium catalysed steam gasification of Yallourn brown coal. Fuel, 1986, 65(12): 1653 doi: 10.1016/0016-2361(86)90264-4 [44] Chen S G, Yang R T. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O. Energy &Fuels, 1997, 11: 421 [45] Han Y, Ma T Z, Chen F, et al. Supercritical water gasification of naphthalene over iron oxide catalyst: A ReaxFF molecular dynamics study. Int J Hydrog Energy, 2019, 44(57): 30486 doi: 10.1016/j.ijhydene.2019.09.215 [46] Dou M H, Sun Y, Han J W, et al. Solution loss characteristics of cokes in H2O+CO2 atmosphere. Iron Steel, 2022, 57(7): 26竇明輝, 孫洋, 韓嘉偉, 等. 焦炭在H2O+CO2氣氛中的溶損反應特性. 鋼鐵, 2022, 57(7):26 -