Synergistic optimization model of sintering ore allocation cost and energy consumption based on PSO–VIKOR
-
摘要: 燒結作為鋼鐵生產的主要能源消耗工序之一,在鋼鐵總能耗中約占10%. 燒結工序能源主要來源于固體燃料,傳統燒結優化配礦燃料配比通常由經驗確定,未能實現原料類型與燒結過程燃耗的動態平衡. 針對燒結過程的能量平衡,首先在已有化學成分、堿度、原料配比等約束條件的基礎上,嵌入燒結能量平衡約束,構建了基于燒結能量平衡的燒結配料模型,最后采用粒子群算法進行求解,實現了燒結鐵礦石、熔劑和燃料的協同優化. 仿真結果表明,本文提出的基于PSO–VIKOR (Particle swarm optimization–multicriteria optimization and compromise solution)燒結優化配礦模型提高了燒結過程的能源利用率,在考慮燒結成本與質量的同時,實現了燒結過程的節能減排,有助于鋼鐵企業燒結低碳綠色發展.Abstract: As one of the major energy-consuming processes in steel production, sintering accounts for approximately 10% of the total energy consumption of steel production. The energy consumed in the sintering process is mainly attributed to solid fuels. Additionally, in traditional sintering, optimized ore–fuel ratio is usually determined by experience, which fails to achieve a dynamic balance between raw material type and sintering process combustion consumption. In this study, we first analyze the complex physicochemical reaction processes, such as the decomposition of crystalline water, combustion of solid fuels, and oxidation and reduction of iron oxides in the sintering process, to understand the energy flow of the sintering process. We then set empirical parameters according to an actual sintering site, and we finally establish a sintering energy–mass balance model. Subsequently, the sintering energy balance constraint is embedded on the basis of the existing constraints of chemical composition, alkalinity, raw material ratio, etc. Additionally, the cost of sintering raw material is taken as the optimization target, after which a sintering batching model based on sintering energy balance is constructed; the penalty function method is used to transform the constrained problem into an unconstrained one; finally, the actual furnace charge structure of a certain steel plant is solved by using the particle swarm algorithm (PSO) to realize completely automatic dosing of sintering iron ore, flux and fuel. The simulation results show that the optimized sintering ore allocation based on the proposed PSO algorithm-led optimal sintering ore allocation model results in a suitable fuel ratio and increased energy efficiency of the sintering process. The optimal sintering ore allocation method is a compromise of various conflicting objectives; therefore, the solved ore allocation scheme is taken as the object, and the four indicators TFe, cost, S content, and solid fuel usage are integrated; additionally, the weights of each indicator are objectively obtained by using the entropy weight method according to the dispersion degree of data and information entropy of each indicator, under the principle of considering the balance of group benefit maximization and individual regret minimization. The VIKOR (Multicriteria optimization and compromise solution) method is used for compromise ranking and preference of the scheme. The final results confirm that the proposed PSO–VIKOR sintering ore allocation optimization model achieves energy saving and emission reduction in the sintering process while considering the sintering cost and quality, which is expected to help in low-carbon green development and sustainable evolution of sintering in iron and steel enterprises and achieve the double carbon target.
-
表 1 燒結點火焦爐煤氣成分 (質量分數)
Table 1. Composition of coke oven gas
% CO CO2 H2 N2 CH4 C2H4 C2H6 C3H6 O2 6 2.3 59 3 26 2.3 0.9 0.2 0.2 表 2 焦爐煤氣氣體密度
Table 2. Density of gas
kg·m–3 CO CO2 H2 N2 CH4 C2H4 C2H6 C3H6 O2 1.25 1.96 0.09 1.25 0.71 1.25 1.34 1.96 1.43 表 3 燒結原料及化學成分
Table 3. Chemical composition of all the sintering materials
Mineral powder Chemical composition(Mass fraction) Price/(¥·t–1) TFe/% FeO/% CaO/% MgO/% SiO2/% Al2O3/% S/% Ig/% H2O/% Ore1 68.79 28.81 0.18 0.26 1.94 0.84 0.02 –2.78 8.00 1317.93 Ore2 64.37 25.18 0.41 0.33 6.44 0.80 0.26 –1.29 7.00 1049.24 Ore3 57.26 0.48 0.05 0.06 5.70 2.82 0.03 7.95 6.00 896.00 Ore4 61.16 0.38 0.03 0.04 4.40 2.46 0.03 4.94 4.00 1149.56 Ore5 62.85 0.83 0.05 0.03 4.50 1.22 0.02 3.73 6.00 823.60 Ore6 60.24 0.31 0.24 0.02 3.70 2.88 0.02 6.41 10.08 774.60 Ore7 56.48 0.27 0.11 0.02 6.14 6.47 0.02 5.38 1.00 910.62 Return mine 55.00 9.50 11.3 2.55 5.80 2.50 0.06 0.09 1.00 350.00 Aux1 0.66 0.76 73.13 1.10 1.66 1.13 0.06 7.72 0.00 336.28 Flux1 0.31 0.18 31.52 20.4 0.92 0.34 0.01 45.89 1.34 72.60 Flux2 0.78 0.25 50.01 3.24 2.56 0.82 0.08 41.61 0.82 65.49 Fuel 1.72 1.65 0.85 0.13 5.48 4.02 0.07 85.72 10 860.18 表 4 目標燒結礦化學成分約束
Table 4. Constraints of raw material
Chemical composition(Mass fraction) R2 TFe/% SiO2/% Al2O3/% MgO/% S/% 54.0–55.5 4.8–5.5 1.0–3.0 1.5–2.0 0–0.09 1.9–2.2 表 5 燒結原料配比約束(質量分數)
Table 5. Constraints of raw material
% Ore 1 Ore2 Ore3 Ore4 Ore5 Ore6 Ore7 Return mine Aux1 Flux1 Flux2 Fuel 0~40 0~40 0~40 0~40 0~40 0~40 0~40 15 5 0~10 0~10 4~6 表 6 優化后各原料配比(質量分數)
Table 6. Ratio of raw materials after optimization
% No. Ore1 Ore2 Ore3 Ore4 Ore5 Ore6 Ore7 Return
mineAux1 Flux1 Flux2 Fuel No.1 3.7855 8.4815 0.04 10.2551 12.5118 20.9130 10.0088 15 5 5.0214 4.4543 4.53229 No.2 0.0507 18.6777 0.03 8.06014 13.4140 24.1340 3.41291 15 5 2.2216 5.8078 4.20222 No.3 3.3255 5.7537 0.09 0.47703 13.2724 18.1142 24.2245 15 5 7.3050 2.9765 4.46282 No.4 2.4800 11.2786 0.00 8.28373 11.6059 18.4789 13.1094 15 5 6.7806 3.6180 4.36329 No.5 0.3784 9.07963 0 11.7859 17.3902 20.1759 6.34414 15 5 6.2795 4.1559 4.42249 No.6 4.3888 13.0007 0.02 7.24491 29.3447 10.1253 1.70495 15 5 4.4295 5.4162 4.33107 表 7 方案指標
Table 7. Program indicators
No. TFe/% SiO2/% Al2O3/% MgO/% S/% R2 Price/(¥·t–1) Flue/kg No.1 54.97 4.93 2.72 1.87 0.060 2.123 818.90 48.24258 No.2 55.78 5.12 2.31 1.29 0.087 1.979 808.28 44.38450 No.3 53.95 5.16 3.39 2.34 0.051 2.038 787.28 47.43627 No.4 54.41 5.07 2.81 2.25 0.067 2.102 809.82 46.42388 No.5 54.70 4.96 2.53 2.15 0.062 2.177 799.86 47.32552 No.6 55.46 4.92 1.94 1.77 0.072 2.175 810.10 45.74686 表 8 基于VIKOR的多屬性決策優化方案
Table 8. Multiattribute decision-making optimization scheme based on VIKOR
No. TFe/% S/% Price/(¥·t–1) Flue/kg Qv=0.5 Rank No.1 54.98 0.0605 818.90 48.24258 0.9630 6 No.2 55.78 0.0876 808.28 44.38450 0.0720 1 No.3 53.96 0.0510 787.29 47.43627 0.7610 5 No.4 54.41 0.0670 809.82 46.42388 0.6200 4 No.5 54.70 0.0620 799.86 47.32552 0.2580 2 No.6 55.46 0.0720 810.11 45.74686 0.3640 3 259luxu-164 -
參考文獻
[1] Wang X D, Shangguan F Q, Xing Y, et al. Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target. Chin J Eng, 2023, 45(5): 853王新東, 上官方欽, 邢奕, 等. “雙碳”目標下鋼鐵企業低碳發展的技術路徑. 工程科學學報, 2023, 45(5):853 [2] Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630 [3] Cheng Z L, Wang J Y, Wei S S, et al. Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering. Appl Energy, 2017, 207: 230 doi: 10.1016/j.apenergy.2017.06.024 [4] Li X C, Liu J H, Fan T J, et al. Establishment and Application of Energy-Saving and Low-Carbon Index System For Iron and Steel Enterprises. Beijing, Institute of Metallurgical Industry Planning, 2018李新創, 劉建輝, 范鐵軍, 等. 鋼鐵企業節能低碳指標體系建立及應用. 北京, 冶金工業規劃研究院, 2018 [5] Meng J Z, Dang R F. Sintering thermo-balance and energy saving. Sinter Pelletizing, 1998(1): 18孟建忠, 黨榮富. 燒結熱平衡與節能降耗. 燒結球團, 1998(1):18 [6] Manojlovi? V, Kamberovi? ?, Kora? M, et al. Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters. Appl Energy, 2022, 307: 118209 doi: 10.1016/j.apenergy.2021.118209 [7] Liu C X, Xie Z H, Sun F R, et al. Optimization for sintering proportioning based on energy value. Appl Therm Eng, 2016, 103: 1087 doi: 10.1016/j.applthermaleng.2016.04.158 [8] Wu M, Ma J J, Hu J, et al. Optimization of coke ratio for the second proportioning phase in a sintering process base on a model of temperature field of material layer. Neurocomputing, 2018, 275: 10 doi: 10.1016/j.neucom.2017.05.003 [9] Ma J J, Wu M, Li Y. Minimal coke consumption calculating method. CIESC J, 2012, 63(9): 2688 doi: 10.3969/j.issn.0438-1157.2012.09.003馬俊杰, 吳敏, 李勇. 燒結配料過程焦粉最低配比計算方法. 化工學報, 2012, 63(9):2688 doi: 10.3969/j.issn.0438-1157.2012.09.003 [10] Pan Y Z. Research on Optimization of Iron ore Blending Based on Basic Sintering Characteristics [Dissertation]. Shenyang: Northeastern University, 2020潘禹竹. 基于燒結基礎特性的鐵礦粉燒結優化配礦研究[學位論文]. 沈陽:東北大學, 2020 [11] Zhang G C, Luo G P, Chai Y F, et al. Optimal allocation of limonite in sintering process. Chin J Eng, 2022, 44(1): 39 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201004張國成, 羅果萍, 柴軼凡, 等. 褐鐵礦在燒結工藝中的優化配置. 工程科學學報, 2022, 44(1):39 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201004 [12] Chen J, Yang C J, Hu B, et al. Optimization of sinter batching based on intelligent method of XGBoost and reverse adaptive population particle swarm optimization. Metall Ind Autom, 2023, 47(3): 71陳健, 楊春節, 胡兵, 等. 基于XGBoost和反向自適應粒子群的燒結配料智能優化方法. 冶金自動化, 2023, 47(3):71 [13] Weng S H, Bao X J, Chen G, et al. Research status of sintering distribution system based on artificial intelligence // The 11th Annual National Energy and Thermal Engineering Conference. Ma'anshan, 2021: 297翁思浩, 包向軍, 陳光, 等. 基于人工智能的燒結配礦系統研究現狀//第十一屆全國能源與熱工學術年會. 馬鞍山, 2021:297 [14] Sun J B, Yang M, Han Z W. Production practice of ore blending by low cost sintering in Bayuquan branch of angang. Angang Technol, 2015(3): 36 doi: 10.3969/j.issn.1006-4613.2015.03.009孫俊波, 楊明, 韓子文. 鞍鋼鲅魚圈燒結低成本配礦生產實踐. 鞍鋼技術, 2015(3):36 doi: 10.3969/j.issn.1006-4613.2015.03.009 [15] Wu X J. The Research on Sintering Ore Optimization Model and Sinter Quality Prediction [Dissertation]. Shijiazhuang: Hebei University of Economics and Business, 2020武曉婧. 燒結配礦優化模型及燒結礦質量預測研究[學位論文]. 石家莊:河北經貿大學, 2020 [16] Liu H Y. Design and Implementation of Iron Ore Matching System Based on . NET [Dissertation]. Ma’anshan: Anhui Universit of Technology, 2019劉含宇. 基于. NET的鐵礦選配系統設計與實現[學位論文]. 馬鞍山:安徽工業大學, 2019 [17] Li Y, Wu M, Cao W H, et al. A multi-objective optimization algorithm for sintering proportion based on linear programming and genetic algorithm particle swam optimization. Contr Theory Appl, 2011, 28(12): 1740李勇, 吳敏, 曹衛華, 等. 基于線性規劃和遺傳–粒子群算法的燒結配料多目標綜合優化方法. 控制理論與應用, 2011, 28(12):1740 [18] Shen X, Chen L G, Xia S J, et al. Iron ores matching analysis and optimization for iron-making system by taking energy consumption, CO2 emission or cost minimization as the objective. Sci China Technol Sci, 2017, 60(11): 1625 doi: 10.1007/s11431-017-9072-9 [19] Feng Q, Li Q, Wang Y Z, et al. Application of constrained multi-objective particle swarm optimization to sinter proportioning optimization. Contr Theory Appl, 2022, 39(5): 923馮茜, 李擎, 王耀祖, 等. 約束多目標粒子群算法在燒結配礦優化中的應用. 控制理論與應用, 2022, 39(5):923 [20] Li K J, Zhang J L, Liu Z J, et al. Optimization model coupling both chemical compositions and high-temperature characteristics of sintering materials for sintering burden. Int J Miner Metall Mater, 2014, 21(3): 216 doi: 10.1007/s12613-014-0888-7 [21] Wang J K, Qiao F, Zhao F, et al. A data-driven model for energy consumption in the sintering process. J Manuf Sci Eng, 2016, 138(10): 101001 doi: 10.1115/1.4033661 [22] Yang S P, Liu H J, Sun H X, et al. Study on influencing factors of high-temperature basic characteristics of iron ore powder and optimization of ore blending. Materials, 2022, 15(9): 3329 doi: 10.3390/ma15093329 [23] Xu B. Research on Fundamental and Technology of Heat-Homogenizing Sintering of Iron Ores [Dissertation]. Changsha: Central South University, 2012許斌. 鐵礦石均熱燒結基礎與技術研究[學位論文]. 長沙:中南大學, 2012 [24] Wang H D, Yu H Z, Fan X H, et al. Progress in research on mathematical model of energy consumption of iron ore sintering process. Iron Steel, 2018, 53(10): 1王海東, 余海釗, 范曉慧, 等. 鐵礦燒結過程能耗數學模型的研究進展. 鋼鐵, 2018, 53(10):1 [25] Mitterlehner J, Loeffler G, Winter F, et al. Modeling and simulation of heat front propagation in the iron ore sintering process. ISIJ Int, 2004, 44(1): 11 doi: 10.2355/isijinternational.44.11 [26] Wu T B, Zhu H Q, Long W, et al. Improved whale optimization algorithm and its application in sintering blending process. J Cent South Univ (Sci Technol), 2020, 51(1): 103伍鐵斌, 朱紅求, 龍文, 等. 改進的鯨魚優化算法及其在燒結配料中的應用. 中南大學學報(自然科學版), 2020, 51(1):103 [27] Yang S P, Sun H X, Zhang T T, et al. Study on high-temperature basic characteristics of low-silica ore sintering and optimal ore allocation. J Iron Steel Res, https://doi.org/10.13228/j.boyuan.issn1001-0963.20220246楊雙平, 孫海興, 張甜甜, 等. 低硅礦燒結高溫基礎特性及優化配礦研究. 鋼鐵研究學報, https://doi.org/10.13228/j.boyuan.issn1001-0963.20220246 [28] Gao Q J, Wang H, Pan X Y, et al. A forecast model of the sinter tumble strength in iron ore fines sintering process. Powder Technol, 2021, 390: 256 doi: 10.1016/j.powtec.2021.05.063 [29] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm // 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Orlando, 2002: 4104 [30] Mirjalili S. Evolutionary Algorithms and Neural Networks. Germany: Springer, 2019 [31] Bertsimas D, Tsitsiklis J. Simulated annealing. Statist Sci, 1993, 8(1): 10 [32] Mardani A, Zavadskas E K, Govindan K, et al. VIKOR technique: A systematic review of the state of the art literature on methodologies and applications. Sustainability, 2016, 8(1): 37 doi: 10.3390/su8010037 [33] Li Z P, Fan X H, Chen G, et al. Optimization of iron ore sintering process based on ELM model and multi-criteria evaluation. Neural Comput & Applic, 2017, 28(8): 2247 [34] Sahu A K, Mahapatra S S, Chatterjee S. Optimization of electro-discharge coating process using harmony search. Mater Today, 2018, 5(5): 12673 doi: 10.1016/j.matpr.2018.02.251 -