<th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
<progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
<th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
<progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"><noframes id="5nh9l">
<span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
<th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
<progress id="5nh9l"><noframes id="5nh9l">
  • 《工程索引》(EI)刊源期刊
  • 中文核心期刊
  • 中國科技論文統計源期刊
  • 中國科學引文數據庫來源期刊

留言板

尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

姓名
郵箱
手機號碼
標題
留言內容
驗證碼

基于PSO–VIKOR的燒結配礦成本與能耗協同優化模型

馬云飛 李擎 張建良 劉征建 郭鋒 王耀祖

馬云飛, 李擎, 張建良, 劉征建, 郭鋒, 王耀祖. 基于PSO–VIKOR的燒結配礦成本與能耗協同優化模型[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.08.30.004
引用本文: 馬云飛, 李擎, 張建良, 劉征建, 郭鋒, 王耀祖. 基于PSO–VIKOR的燒結配礦成本與能耗協同優化模型[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.08.30.004
MA Yunfei, LI Qing, ZHANG Jianliang, LIU Zhengjian, GUO Feng, WANG Yaozu. Synergistic optimization model of sintering ore allocation cost and energy consumption based on PSO–VIKOR[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.08.30.004
Citation: MA Yunfei, LI Qing, ZHANG Jianliang, LIU Zhengjian, GUO Feng, WANG Yaozu. Synergistic optimization model of sintering ore allocation cost and energy consumption based on PSO–VIKOR[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.08.30.004

基于PSO–VIKOR的燒結配礦成本與能耗協同優化模型

doi: 10.13374/j.issn2095-9389.2022.08.30.004
基金項目: 北京市科技新星計劃資助項目(Z211100002121115);博士后面上基金資助項目(2021M690369)
詳細信息
    通訊作者:

    E-mail: yaozuwang@ustb.edu.cn

  • 中圖分類號: TP3-05

Synergistic optimization model of sintering ore allocation cost and energy consumption based on PSO–VIKOR

More Information
  • 摘要: 燒結作為鋼鐵生產的主要能源消耗工序之一,在鋼鐵總能耗中約占10%. 燒結工序能源主要來源于固體燃料,傳統燒結優化配礦燃料配比通常由經驗確定,未能實現原料類型與燒結過程燃耗的動態平衡. 針對燒結過程的能量平衡,首先在已有化學成分、堿度、原料配比等約束條件的基礎上,嵌入燒結能量平衡約束,構建了基于燒結能量平衡的燒結配料模型,最后采用粒子群算法進行求解,實現了燒結鐵礦石、熔劑和燃料的協同優化. 仿真結果表明,本文提出的基于PSO–VIKOR (Particle swarm optimization–multicriteria optimization and compromise solution)燒結優化配礦模型提高了燒結過程的能源利用率,在考慮燒結成本與質量的同時,實現了燒結過程的節能減排,有助于鋼鐵企業燒結低碳綠色發展.

     

  • 圖  1  鐵礦石燒結工藝流程示意圖

    Figure  1.  Flow diagram of the sintering process

    圖  2  燒結熱平衡示意圖

    Figure  2.  Sintering heat balance diagram

    圖  3  各方案熱量總收入

    Figure  3.  Total heat income by the schemes

    圖  4  各方案熱量總支出

    Figure  4.  Total heat expenditure by the schemes

    圖  5  迭代曲線

    Figure  5.  Iterative curve

    表  1  燒結點火焦爐煤氣成分 (質量分數)

    Table  1.   Composition of coke oven gas %

    COCO2H2N2CH4C2H4C2H6C3H6O2
    62.3593262.30.90.20.2
    下載: 導出CSV

    表  2  焦爐煤氣氣體密度

    Table  2.   Density of gas kg·m–3

    COCO2H2N2CH4C2H4C2H6C3H6O2
    1.251.960.091.250.711.251.341.961.43
    下載: 導出CSV

    表  3  燒結原料及化學成分

    Table  3.   Chemical composition of all the sintering materials

    Mineral powderChemical composition(Mass fraction)Price/(¥·t–1)
    TFe/%FeO/%CaO/%MgO/%SiO2/%Al2O3/%S/%Ig/%H2O/%
    Ore168.7928.810.180.261.940.840.02–2.788.001317.93
    Ore264.3725.180.410.336.440.800.26–1.297.001049.24
    Ore357.260.480.050.065.702.820.037.956.00896.00
    Ore461.160.380.030.044.402.460.034.944.001149.56
    Ore562.850.830.050.034.501.220.023.736.00823.60
    Ore660.240.310.240.023.702.880.026.4110.08774.60
    Ore756.480.270.110.026.146.470.025.381.00910.62
    Return mine55.009.5011.32.555.802.500.060.091.00350.00
    Aux10.660.7673.131.101.661.130.067.720.00336.28
    Flux10.310.1831.5220.40.920.340.0145.891.3472.60
    Flux20.780.2550.013.242.560.820.0841.610.8265.49
    Fuel1.721.650.850.135.484.020.0785.7210860.18
    下載: 導出CSV

    表  4  目標燒結礦化學成分約束

    Table  4.   Constraints of raw material

    Chemical composition(Mass fraction) R2
    TFe/% SiO2/% Al2O3/% MgO/% S/%
    54.0–55.5 4.8–5.5 1.0–3.0 1.5–2.0 0–0.09 1.9–2.2
    下載: 導出CSV

    表  5  燒結原料配比約束(質量分數)

    Table  5.   Constraints of raw material %

    Ore 1 Ore2 Ore3 Ore4 Ore5 Ore6 Ore7 Return mine Aux1 Flux1 Flux2 Fuel
    0~40 0~40 0~40 0~40 0~40 0~40 0~40 15 5 0~10 0~10 4~6
    下載: 導出CSV

    表  6  優化后各原料配比(質量分數)

    Table  6.   Ratio of raw materials after optimization %

    No.Ore1Ore2Ore3Ore4Ore5Ore6Ore7Return
    mine
    Aux1Flux1Flux2Fuel
    No.13.78558.48150.0410.255112.511820.913010.00881555.02144.45434.53229
    No.20.050718.67770.038.0601413.414024.13403.412911552.22165.80784.20222
    No.33.32555.75370.090.4770313.272418.114224.22451557.30502.97654.46282
    No.42.480011.27860.008.2837311.605918.478913.10941556.78063.61804.36329
    No.50.37849.07963011.785917.390220.17596.344141556.27954.15594.42249
    No.64.388813.00070.027.2449129.344710.12531.704951554.42955.41624.33107
    下載: 導出CSV

    表  7  方案指標

    Table  7.   Program indicators

    No.TFe/%SiO2/%Al2O3/%MgO/%S/%R2Price/(¥·t–1)Flue/kg
    No.154.974.932.721.870.0602.123818.9048.24258
    No.255.785.122.311.290.0871.979808.2844.38450
    No.353.955.163.392.340.0512.038787.2847.43627
    No.454.415.072.812.250.0672.102809.8246.42388
    No.554.704.962.532.150.0622.177799.8647.32552
    No.655.464.921.941.770.0722.175810.1045.74686
    下載: 導出CSV

    表  8  基于VIKOR的多屬性決策優化方案

    Table  8.   Multiattribute decision-making optimization scheme based on VIKOR

    No.TFe/%S/%Price/(¥·t–1)Flue/kgQv=0.5Rank
    No.154.980.0605818.9048.242580.96306
    No.255.780.0876808.2844.384500.07201
    No.353.960.0510787.2947.436270.76105
    No.454.410.0670809.8246.423880.62004
    No.554.700.0620799.8647.325520.25802
    No.655.460.0720810.1145.746860.36403
    下載: 導出CSV
    <th id="5nh9l"></th><strike id="5nh9l"></strike><th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th><strike id="5nh9l"></strike>
    <progress id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"><noframes id="5nh9l">
    <th id="5nh9l"></th> <strike id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span>
    <progress id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"><noframes id="5nh9l"><span id="5nh9l"></span><strike id="5nh9l"><noframes id="5nh9l"><strike id="5nh9l"></strike>
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"><noframes id="5nh9l">
    <span id="5nh9l"></span><span id="5nh9l"><video id="5nh9l"></video></span>
    <th id="5nh9l"><noframes id="5nh9l"><th id="5nh9l"></th>
    <progress id="5nh9l"><noframes id="5nh9l">
    259luxu-164
  • [1] Wang X D, Shangguan F Q, Xing Y, et al. Research on the low-carbon development technology route of iron and steel enterprises under the “double carbon” target. Chin J Eng, 2023, 45(5): 853

    王新東, 上官方欽, 邢奕, 等. “雙碳”目標下鋼鐵企業低碳發展的技術路徑. 工程科學學報, 2023, 45(5):853
    [2] Zhang J L, Liu Z J, Jiao K X, et al. Progress of new technologies and fundamental theory about ironmaking. Chin J Eng, 2021, 43(12): 1630

    張建良, 劉征建, 焦克新, 等. 煉鐵新技術及基礎理論研究進展. 工程科學學報, 2021, 43(12):1630
    [3] Cheng Z L, Wang J Y, Wei S S, et al. Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering. Appl Energy, 2017, 207: 230 doi: 10.1016/j.apenergy.2017.06.024
    [4] Li X C, Liu J H, Fan T J, et al. Establishment and Application of Energy-Saving and Low-Carbon Index System For Iron and Steel Enterprises. Beijing, Institute of Metallurgical Industry Planning, 2018

    李新創, 劉建輝, 范鐵軍, 等. 鋼鐵企業節能低碳指標體系建立及應用. 北京, 冶金工業規劃研究院, 2018
    [5] Meng J Z, Dang R F. Sintering thermo-balance and energy saving. Sinter Pelletizing, 1998(1): 18

    孟建忠, 黨榮富. 燒結熱平衡與節能降耗. 燒結球團, 1998(1):18
    [6] Manojlovi? V, Kamberovi? ?, Kora? M, et al. Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters. Appl Energy, 2022, 307: 118209 doi: 10.1016/j.apenergy.2021.118209
    [7] Liu C X, Xie Z H, Sun F R, et al. Optimization for sintering proportioning based on energy value. Appl Therm Eng, 2016, 103: 1087 doi: 10.1016/j.applthermaleng.2016.04.158
    [8] Wu M, Ma J J, Hu J, et al. Optimization of coke ratio for the second proportioning phase in a sintering process base on a model of temperature field of material layer. Neurocomputing, 2018, 275: 10 doi: 10.1016/j.neucom.2017.05.003
    [9] Ma J J, Wu M, Li Y. Minimal coke consumption calculating method. CIESC J, 2012, 63(9): 2688 doi: 10.3969/j.issn.0438-1157.2012.09.003

    馬俊杰, 吳敏, 李勇. 燒結配料過程焦粉最低配比計算方法. 化工學報, 2012, 63(9):2688 doi: 10.3969/j.issn.0438-1157.2012.09.003
    [10] Pan Y Z. Research on Optimization of Iron ore Blending Based on Basic Sintering Characteristics [Dissertation]. Shenyang: Northeastern University, 2020

    潘禹竹. 基于燒結基礎特性的鐵礦粉燒結優化配礦研究[學位論文]. 沈陽:東北大學, 2020
    [11] Zhang G C, Luo G P, Chai Y F, et al. Optimal allocation of limonite in sintering process. Chin J Eng, 2022, 44(1): 39 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201004

    張國成, 羅果萍, 柴軼凡, 等. 褐鐵礦在燒結工藝中的優化配置. 工程科學學報, 2022, 44(1):39 doi: 10.3321/j.issn.1001-053X.2022.1.bjkjdxxb202201004
    [12] Chen J, Yang C J, Hu B, et al. Optimization of sinter batching based on intelligent method of XGBoost and reverse adaptive population particle swarm optimization. Metall Ind Autom, 2023, 47(3): 71

    陳健, 楊春節, 胡兵, 等. 基于XGBoost和反向自適應粒子群的燒結配料智能優化方法. 冶金自動化, 2023, 47(3):71
    [13] Weng S H, Bao X J, Chen G, et al. Research status of sintering distribution system based on artificial intelligence // The 11th Annual National Energy and Thermal Engineering Conference. Ma'anshan, 2021: 297

    翁思浩, 包向軍, 陳光, 等. 基于人工智能的燒結配礦系統研究現狀//第十一屆全國能源與熱工學術年會. 馬鞍山, 2021:297
    [14] Sun J B, Yang M, Han Z W. Production practice of ore blending by low cost sintering in Bayuquan branch of angang. Angang Technol, 2015(3): 36 doi: 10.3969/j.issn.1006-4613.2015.03.009

    孫俊波, 楊明, 韓子文. 鞍鋼鲅魚圈燒結低成本配礦生產實踐. 鞍鋼技術, 2015(3):36 doi: 10.3969/j.issn.1006-4613.2015.03.009
    [15] Wu X J. The Research on Sintering Ore Optimization Model and Sinter Quality Prediction [Dissertation]. Shijiazhuang: Hebei University of Economics and Business, 2020

    武曉婧. 燒結配礦優化模型及燒結礦質量預測研究[學位論文]. 石家莊:河北經貿大學, 2020
    [16] Liu H Y. Design and Implementation of Iron Ore Matching System Based on . NET [Dissertation]. Ma’anshan: Anhui Universit of Technology, 2019

    劉含宇. 基于. NET的鐵礦選配系統設計與實現[學位論文]. 馬鞍山:安徽工業大學, 2019
    [17] Li Y, Wu M, Cao W H, et al. A multi-objective optimization algorithm for sintering proportion based on linear programming and genetic algorithm particle swam optimization. Contr Theory Appl, 2011, 28(12): 1740

    李勇, 吳敏, 曹衛華, 等. 基于線性規劃和遺傳–粒子群算法的燒結配料多目標綜合優化方法. 控制理論與應用, 2011, 28(12):1740
    [18] Shen X, Chen L G, Xia S J, et al. Iron ores matching analysis and optimization for iron-making system by taking energy consumption, CO2 emission or cost minimization as the objective. Sci China Technol Sci, 2017, 60(11): 1625 doi: 10.1007/s11431-017-9072-9
    [19] Feng Q, Li Q, Wang Y Z, et al. Application of constrained multi-objective particle swarm optimization to sinter proportioning optimization. Contr Theory Appl, 2022, 39(5): 923

    馮茜, 李擎, 王耀祖, 等. 約束多目標粒子群算法在燒結配礦優化中的應用. 控制理論與應用, 2022, 39(5):923
    [20] Li K J, Zhang J L, Liu Z J, et al. Optimization model coupling both chemical compositions and high-temperature characteristics of sintering materials for sintering burden. Int J Miner Metall Mater, 2014, 21(3): 216 doi: 10.1007/s12613-014-0888-7
    [21] Wang J K, Qiao F, Zhao F, et al. A data-driven model for energy consumption in the sintering process. J Manuf Sci Eng, 2016, 138(10): 101001 doi: 10.1115/1.4033661
    [22] Yang S P, Liu H J, Sun H X, et al. Study on influencing factors of high-temperature basic characteristics of iron ore powder and optimization of ore blending. Materials, 2022, 15(9): 3329 doi: 10.3390/ma15093329
    [23] Xu B. Research on Fundamental and Technology of Heat-Homogenizing Sintering of Iron Ores [Dissertation]. Changsha: Central South University, 2012

    許斌. 鐵礦石均熱燒結基礎與技術研究[學位論文]. 長沙:中南大學, 2012
    [24] Wang H D, Yu H Z, Fan X H, et al. Progress in research on mathematical model of energy consumption of iron ore sintering process. Iron Steel, 2018, 53(10): 1

    王海東, 余海釗, 范曉慧, 等. 鐵礦燒結過程能耗數學模型的研究進展. 鋼鐵, 2018, 53(10):1
    [25] Mitterlehner J, Loeffler G, Winter F, et al. Modeling and simulation of heat front propagation in the iron ore sintering process. ISIJ Int, 2004, 44(1): 11 doi: 10.2355/isijinternational.44.11
    [26] Wu T B, Zhu H Q, Long W, et al. Improved whale optimization algorithm and its application in sintering blending process. J Cent South Univ (Sci Technol), 2020, 51(1): 103

    伍鐵斌, 朱紅求, 龍文, 等. 改進的鯨魚優化算法及其在燒結配料中的應用. 中南大學學報(自然科學版), 2020, 51(1):103
    [27] Yang S P, Sun H X, Zhang T T, et al. Study on high-temperature basic characteristics of low-silica ore sintering and optimal ore allocation. J Iron Steel Res, https://doi.org/10.13228/j.boyuan.issn1001-0963.20220246

    楊雙平, 孫海興, 張甜甜, 等. 低硅礦燒結高溫基礎特性及優化配礦研究. 鋼鐵研究學報, https://doi.org/10.13228/j.boyuan.issn1001-0963.20220246
    [28] Gao Q J, Wang H, Pan X Y, et al. A forecast model of the sinter tumble strength in iron ore fines sintering process. Powder Technol, 2021, 390: 256 doi: 10.1016/j.powtec.2021.05.063
    [29] Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm // 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Orlando, 2002: 4104
    [30] Mirjalili S. Evolutionary Algorithms and Neural Networks. Germany: Springer, 2019
    [31] Bertsimas D, Tsitsiklis J. Simulated annealing. Statist Sci, 1993, 8(1): 10
    [32] Mardani A, Zavadskas E K, Govindan K, et al. VIKOR technique: A systematic review of the state of the art literature on methodologies and applications. Sustainability, 2016, 8(1): 37 doi: 10.3390/su8010037
    [33] Li Z P, Fan X H, Chen G, et al. Optimization of iron ore sintering process based on ELM model and multi-criteria evaluation. Neural Comput & Applic, 2017, 28(8): 2247
    [34] Sahu A K, Mahapatra S S, Chatterjee S. Optimization of electro-discharge coating process using harmony search. Mater Today, 2018, 5(5): 12673 doi: 10.1016/j.matpr.2018.02.251
  • 加載中
圖(5) / 表(8)
計量
  • 文章訪問數:  167
  • HTML全文瀏覽量:  22
  • PDF下載量:  11
  • 被引次數: 0
出版歷程
  • 收稿日期:  2022-08-30
  • 網絡出版日期:  2023-03-28

目錄

    /

    返回文章
    返回