Stability control strategy and application of deep pump absorbing well chamber group
-
摘要: 為解決深部泵房硐室群失穩現象突出的問題,以大強煤礦?890水平泵房吸水井硐室群為工程背景,通過理論分析和數值模擬,分析硐室群的破壞原因,對比集約化設計和傳統設計對圍巖穩定性控制的效果. 基于恒阻大變形(NPR)錨索高恒阻、高延伸率和吸能的特性,建立NPR錨索支護下硐室交岔口圍巖能量失穩判據,提出以高預應力NPR錨索+立體桁架為核心的泵房吸水井集約化控制對策,并進行現場應用. 結果表明:相比傳統設計,集約化設計簡化了硐室布局和施工程序,同時能夠減小巷道位移、應力,使塑性區范圍減小并趨于均勻化,消除了空間效應;通過NPR錨索的高恒阻大變形和在桁架與圍巖間預留的間隙釋放圍巖變形能,通過NPR錨索的高預應力和立體桁架的強度限制圍巖變形,能有效保證巷道穩定;現場應用表明,該對策將圍巖變形控制在70 mm以內,應用效果良好,可為類似工程提供參考.Abstract: Deep rock mass is in a complex mechanical environment characterized by high ground stress, high ground temperature, high karst water pressure, and strong mining disturbance, resulting in difficult support and high levels of failure in the pump chamber group. To solve the problem of the instability of the deep pump chamber group, this paper takes the ?890-level pump absorbing well chamber group of the Daqiang coal mine as the engineering background. Through theoretical analysis, numerical simulation, and field tests, the reasons for the failure of the chamber group are analyzed, and the effects of intensive design and traditional design on the stability control of the surrounding rock are compared. According to the characteristics of high constant resistance, high elongation, and energy absorption of the negative Poisson’s ratio (NPR) cable, the instability energy criterion of intersection under the NPR cable support is established, where the chamber is stable at KN ≤ 1. The intensive control strategy of the pump absorbing well with a high prestressed NPR cable and three-dimensional truss as the core is presented and applied in the field. The results show that high ground stress, low surrounding rock strength, dense chamber group distribution, unreasonable excavation sequence of the chamber group, and inappropriate support are the main reasons for the failure of the deep pump absorbing well chamber group. Compared with the traditional design, the intensive design simplifies the layout and construction procedure of the chamber by considering the absorbing well, improves the stress conditions of the chamber, reduces the displacement and stress of the roadway, makes the plastic zone range smaller and more uniform, and eliminates the spatial effect. The deformation energy of the surrounding rock is released through the high constant resistance and large deformation of the NPR cable and the reserved gap between the truss and the surrounding rock, and the deformation of the surrounding rock is limited through the application of high prestress to the NPR cable and the strength of the three-dimensional truss material, which allows for the full use of the self-bearing capacity of the surrounding rock and effectively ensures the roadway stability. The field application shows that this strategy can effectively ensure the stability of the chamber group; the deformation of the surrounding rock is controlled within 70 mm, and there is no shedding, cracking, or destruction of the sprayed layer after concrete sealing, which indicates that the technology plays an important role in controlling the stability of the deep roadway and can provide a reference for similar projects.
-
Key words:
- deep /
- chamber group /
- intensive /
- NPR cable /
- stability control
-
表 1 巖層物理力學參數
Table 1. Physical and mechanical parameters of the rock strata
Lithology Elastic modulus/GPa Poisson ratio Cohesion/MPa Friction/(°) Tension/MPa Density/(kg·m?3) Siltstone 7.8 0.23 0.5 21 0.2 2510 Sand-conglomerate 8.5 0.19 0.6 24 1.3 2600 259luxu-164 -
參考文獻
[1] Cai M F, Brown E T. Challenges in the mining and utilization of deep mineral resources. Engineering, 2017, 3(4): 432 doi: 10.1016/J.ENG.2017.04.027 [2] Xie H P. Research review of the state key research development program of China: Deep rock mechanics and mining theory. J China Coal Soc, 2019, 44(5): 1283 doi: 10.13225/j.cnki.jccs.2019.6038謝和平. 深部巖體力學與開采理論研究進展. 煤炭學報, 2019, 44(5):1283 doi: 10.13225/j.cnki.jccs.2019.6038 [3] He M C. Research progress of deep shaft construction mechanics. J China Coal Soc, 2021, 46(3): 726 doi: 10.13225/j.cnki.jccs.YT21.0124何滿潮. 深部建井力學研究進展. 煤炭學報, 2021, 46(3):726 doi: 10.13225/j.cnki.jccs.YT21.0124 [4] He M C, Xie H P, Peng S P, et al. Study on rock mechanics in deep mining engineering. Chin J Rock Mech Eng, 2005, 24(16): 2803 doi: 10.3321/j.issn:1000-6915.2005.16.001何滿潮, 謝和平, 彭蘇萍, 等. 深部開采巖體力學研究. 巖石力學與工程學報, 2005, 24(16):2803 doi: 10.3321/j.issn:1000-6915.2005.16.001 [5] Xin C Y, Gao F, Song L Y, et al. Two strong stability control technology of pump chamber group under deep and complicated conditions. Coal Sci Technol, 2015, 43(8): 23信長瑜, 高飛, 宋浬永, 等. 深部復雜條件下泵房硐室群兩強穩定型控制技術. 煤炭科學技術, 2015, 43(8):23 [6] Bi W G, Guo W N, Lin D G. Numerical simulation analysis of surrounding rock support of central pump house in 1000 m-deeper mine. Coal Eng, 2019, 51(5): 129畢衛國, 郭偉娜, 林登閣. 千米深井中央泵房圍巖支護數值模擬研究. 煤炭工程, 2019, 51(5):129 [7] Zhang G Y, Sun C L, Xu B, et al. Research on fully-mechanized excavation technology of special underground chamber in Yili No. 4 Mine. Coal Sci Technol, 2020, 48(S2): 7張官禹, 孫成磊, 許波, 等. 伊犁四礦井底車場特殊硐室綜掘施工工藝研究. 煤炭科學技術, 2020, 48(S2):7 [8] He M C, Li G F, Ren A W, et al. Analysis of the stability of intersecting chambers in deep soft-rock roadway construction. J China Univ Min Technol, 2008(2): 167 doi: 10.3321/j.issn:1000-1964.2008.02.005何滿潮, 李國峰, 任愛武, 等. 深部軟巖巷道立體交叉硐室群穩定性分析. 中國礦業大學學報, 2008(2):167 doi: 10.3321/j.issn:1000-1964.2008.02.005 [9] Li S J, Zhang M J, Zhang D Q. Optimization design and supporting technology of deep water pump room in Hemei corporation. Coal Min Technol, 2015, 20(3): 69李世杰, 張明杰, 張大千. 鶴煤公司深部水泵房優化設計與支護技術. 煤礦開采, 2015, 20(3):69 [10] Cai F. Integrated control technology of surrounding stability of pump house absorbing water well chambers in deep. Coal Min Technol, 2017, 22(1): 60 doi: 10.13532/j.cnki.cn11-3677/td.2017.01.014蔡峰. 深部泵房吸水井硐室群圍巖穩定性一體化控制技術. 煤礦開采, 2017, 22(1):60 doi: 10.13532/j.cnki.cn11-3677/td.2017.01.014 [11] Huang Y B, Wang Q, Gao H K, et al. Failure mechanism and construction process optimization of deep soft rock chamber group. J China Univ Min Technol, 2021, 50(1): 69黃玉兵, 王琦, 高紅科, 等. 深部軟巖硐室群破壞機制與施工過程優化. 中國礦業大學學報, 2021, 50(1):69 [12] Wang J, Ma L, Liu P, et al. Study on soft rock cavern groups support technology in deep mine. J Basic Sci Eng, 2023, 31(2): 330王炯, 馬磊, 劉鵬, 等. 深井軟巖硐室群支護技術研究. 應用基礎與工程科學學報, 2023, 31(2):330 [13] Wang Q Z, Xie W B, Jing S G, et al. Instability mechanism and control technology of chamber group surrounding rock in complex structural area. J Min Saf Eng, 2014, 31(2): 263 doi: 10.13545/j.issn1673-3363.2014.02.016王其洲, 謝文兵, 荊升國, 等. 構造復雜區硐室群圍巖失穩機理及控制技術研究. 采礦與安全工程學報, 2014, 31(2):263 doi: 10.13545/j.issn1673-3363.2014.02.016 [14] Yang R S, Xue H J, Guo D M, et al. Failure mechanism of surrounding rock of large section chambers in complex rock formations and its control. J China Coal Soc, 2015, 40(10): 2234 doi: 10.13225/j.cnki.jccs.2015.6003楊仁樹, 薛華俊, 郭東明, 等. 復雜巖層大斷面硐室群圍巖破壞機理及控制. 煤炭學報, 2015, 40(10):2234 doi: 10.13225/j.cnki.jccs.2015.6003 [15] Yang J X. Study on failure mechanism and comprehensive strengthening technology of roadways and chambers group at shaft bottom. Coal Sci Technol, 2019, 47(4): 69 doi: 10.13199/j.cnki.cst.2019.04.012楊計先. 井底巷道硐室群破壞機理及綜合加固技術研究. 煤炭科學技術, 2019, 47(4):69 doi: 10.13199/j.cnki.cst.2019.04.012 [16] Xie S R, Jiang Z S, Chen D D, et al. Study on zonal cooperative control technology of surrounding rock of super large section soft rock chamber group connected by deep vertical shaft. Adv Civ Eng, 2022 [17] Tan Y L, Fan D Y, Liu X S, et al. Research progress on chain instability control of surrounding rock for super-large section chamber group in deep coal mines. J China Coal Soc, 2022, 47(1): 180譚云亮, 范德源, 劉學生, 等. 煤礦深部超大斷面硐室群圍巖連鎖失穩控制研究進展. 煤炭學報, 2022, 47(1):180 [18] Zhang Y, Sun X M, Zheng Y L, et al. An anti-punching and energy-releasing coupling support technology in deep mining roadway and its application. Chin J Rock Mech Eng, 2019, 38(9): 1860 doi: 10.13722/j.cnki.jrme.2018.1514張勇, 孫曉明, 鄭有雷, 等. 深部回采巷道防沖釋能耦合支護技術及應用. 巖石力學與工程學報, 2019, 38(9):1860 doi: 10.13722/j.cnki.jrme.2018.1514 [19] Guo Z B, Ren A W, Wang J, et al. Alternative integrated design of pump house chambers in deep soft rocks. J Min Saf Eng, 2009, 26(1): 91 doi: 10.3969/j.issn.1673-3363.2009.01.018郭志飚, 任愛武, 王炯, 等. 深部軟巖泵房硐室群集約化設計技術. 采礦與安全工程學報, 2009, 26(1):91 doi: 10.3969/j.issn.1673-3363.2009.01.018 [20] Fan D Y, Liu X S, Tan Y L, et al. Instability energy mechanism of super-large section crossing chambers in deep coal mines. Int J Min Sci Technol, 2022, 32(5): 1075 doi: 10.1016/j.ijmst.2022.06.008 [21] He M C, Li C, Gong W L, et al. Support principles of NPR bolts/cables and control techniques of large deformation. Chin J Rock Mech Eng, 2016, 35(8): 1513 doi: 10.13722/j.cnki.jrme.2015.1246何滿潮, 李晨, 宮偉力, 等. NPR錨桿/索支護原理及大變形控制技術. 巖石力學與工程學報, 2016, 35(8):1513 doi: 10.13722/j.cnki.jrme.2015.1246 [22] Gong W L, Zhu D Y, Wang J, et al. Deformation and energy equation verification of NPR anchor cable support roadway based on model test. J Min Saf Eng, 2020, 37(5): 918 doi: 10.13545/j.cnki.jmse.2020.05.007宮偉力, 朱道勇, 王炯, 等. 基于模型試驗的NPR錨索支護巷道變形及能量方程驗證. 采礦與安全工程學報, 2020, 37(5):918 doi: 10.13545/j.cnki.jmse.2020.05.007 [23] He M C, Gong W L, Wang J, et al. Development of a novel energy-absorbing bolt with extraordinarily large elongation and constant resistance. Int J Rock Mech Min Sci, 2014, 67: 29 doi: 10.1016/j.ijrmms.2014.01.007 [24] He M C, Jing H H, Sun X M. Engineering Mechanics of Soft Rock. Beijing: Science Press, 2002何滿潮, 景海河, 孫曉明. 軟巖工程力學. 北京: 科學出版社, 2002 [25] Tao Z G, Zhao S, Zhang M X, et al. Numerical simulation research on mechanical properties of constant resistance bolt/cable with large deformation. J Min Saf Eng, 2018, 35(1): 40 doi: 10.13545/j.cnki.jmse.2018.01.006陶志剛, 趙帥, 張明旭, 等. 恒阻大變形錨桿/索力學特性數值模擬研究. 采礦與安全工程學報, 2018, 35(1):40 doi: 10.13545/j.cnki.jmse.2018.01.006 [26] Tao Z G, Luo S L, Li M N, et al. Optimization of large deformation control parameters of layered slate tunnels based on numerical simulation and field test. Chin J Rock Mech Eng, 2020, 39(3): 491 doi: 10.13722/j.cnki.jrme.2019.0841陶志剛, 羅森林, 李夢楠, 等. 層狀板巖隧道大變形控制參數優化數值模擬分析及現場試驗. 巖石力學與工程學報, 2020, 39(3):491 doi: 10.13722/j.cnki.jrme.2019.0841 -