-
摘要: 轉爐作為一個高溫高壓、多元多相的反應容器,容易發生噴濺或溢渣事故. 良好的熔池攪拌可以增大渣–金反應面積,提高煉鋼效率;異常的熔池攪拌則會造成金屬損失,毀壞爐體及其附屬設備,甚至威脅到爐前工作人員的人身安全. 本文總結了前人對噴濺機理及影響因素的研究結果,轉爐噴濺按產生的原因可以分為爆發性噴濺、泡沫性噴濺、金屬性噴濺和其他噴濺,其中爆發性噴濺的危害最大,泡沫性噴濺的發生頻率最高. 噴濺事故的產生總體可以歸結為爐內激烈化學反應產生氣泡驅動的高溫熔體噴濺和頂底復吹為熔池提供的流動能量所產生的噴濺,且一次噴濺事故的發生常常是多種因素耦合引發,從單方面分析噴濺事故原因過于片面,研究出一套適用于轉爐噴濺的安全評價模型是當務之急. 并對現有的噴濺預報模型進行了綜述,總結了爐氣分析法、音頻分析法、圖像分析法的預測原理及部分應用結果,指出現有預測模型沒有得到廣泛應用的原因,未來噴濺預測模型會朝著更加智能化、精細化的方向發展.Abstract: As a high-temperature, high-pressure, multi-phase reaction vessel, the converter is vulnerable to splashing or slag overflow. Good molten pool surge can expand the slag–gold reaction area and enhance steelmaking efficiency. Abnormal molten pool surge can cause metal loss, damage the furnace body and its auxiliary equipment, and even threaten the personal safety of workers working in front of the furnace. This paper summarizes the previous research findings on splashing mechanisms and influencing factors. According to the occurrence principle, converter splashes can be classified into explosive splashes, foam splashes, metallic splashes, and other splashes, among which explosive splashes are the most dangerous and foam splashes occur most frequently. The occurrence of splashing accidents can be generally attributed to the high-temperature melt splashing caused by bubbles produced during the vigorous chemical reaction in the furnace and the splashing produced by the flow energy generated during the top–bottom combined blowing of the molten pool. The influencing factors of splashing are discussed based on six aspects: loading system, slag making system, oxygen supply system, bottom blowing system, temperature system, and safety system, and the foam of slag, oxygen lance blowing parameters, and bottom blowing parameters are thoroughly examined. It is observed that the occurrence of a splashing accident is frequently caused by the coupling of multiple factors. It is mainly one-sided, and hence the cause of the splashing accident cannot be unilaterally analyzed. Currently, no methods are present that can effectively quantify the effect of each factor on the splashing. Thus, developing a set of safety evaluation models suitable for converter splashing is imperative. Furthermore, the author summarizes the existing splash prediction models, examines the benefits and drawbacks of some splash prediction models, and summarizes the prediction principles and some application outcomes of the furnace gas analysis, audio analysis, and image analysis methods. Although preliminary progress has been made in the study of prediction models, there are still challenges that need to be overcome. It is pointed out that the reason why the existing prediction models have not been widely used is due to the low prediction accuracy, short prediction time, high cost, and low practicability. Several researchers have used a combination of several models to predict splash in converter. The findings reveal that various models can learn from each other, and the prediction accuracy of the comprehensive model is higher than that of the single model. Furthermore, the splash prediction model will become more intelligent and refined in the future.
-
Key words:
- converter splashes /
- slag overflow /
- splash mechanism /
- influence factor /
- prediction model
-
圖 6 氧流量和槍位對噴濺率的影響. (a) Yang等[27]300 t轉爐6孔噴頭1∶10水模型實驗結果; (b) Guo等[18]260 t轉爐5孔噴頭1∶7水模型實驗結果
Figure 6. Effect of oxygen flow rate and gun position on splash rate: (a) 1∶10 water model experimental results of the 6-hole nozzle in 300 t converter by Yang et al.[27]; (b) 1∶7 water model experimental results of the 5-hole nozzle in 260 t converter by Guo et al.[18]
表 1 不同噴濺類型對比表
Table 1. Comparison of different splash types
Splash type Main cause Main occurrence period Occurrence frequency (relative) Main hazards Explosive splash Violent reaction of carbon and oxygen Early and late stages of smelting Moderate Large cost loss and possible injury Foam splash Serious foam of slag Middle stage of smelting High frequency Large cost loss, resulting in shutdown Metallic splash Post-drying of slag Middle stage of smelting Low frequency Metal loss and possible injury 表 2 爐渣泡沫化的影響因素
Table 2. Influence factors of the slag foam
Factor Influence mode Specific performance Correlation with
foam indexSi and P content of molten iron During the blowing process, SiO2 and P2O5 are produced and enter the slag SiO2 and P2O5 are surface-active substances that reduce surface tension and increase viscosity[7] Positive correlation FeO content in slag The amount of FeO in slag dynamically changes with the progress of oxidation and decarbonization reaction and affects the liquid phase ratio in slag[15] When the FeO content is less than 20%, the slag viscosity decreases with the increase in FeO content and tends to a fixed value when the FeO content is greater than 20%[16?17] Negative correlation Basicity Basicity is an important parameter of slag, and it changes with the addition of slag-forming materials and smelting, which has an important effect on the characteristics of slag At the same temperature, the foam index decreases first and then increases with the increase in basicity[12] First negative correlation, then positive correlation Temperature Temperature is important to the formation rate of carbon–oxygen reaction and the physical and chemical properties of slag components With the increase in temperature, on the one hand, the reaction rate of carbon and oxygen increases, which is conducive to foaming; However, the viscosity of molten slag reduces, and the foaming property decreases. The latter has a slightly higher impact than the former[12] Positive correlation 表 3 轉爐噴濺預測模型優缺點對比
Table 3. Comparison of benefits and drawbacks of the prediction models for converter splashing
Splash prediction method Advantage Shortcoming Furnace gas analysis method Give certain guidance to the blowing conditions in the furnace (such as temperature, decarbonization, end-point carbon drawing[40], etc.) Real-time performance is poor, and it is primarily used for cause analysis during and after splashing Audio analysis method Auxiliary slagging, obtaining slag status, high hit rate of dry return prediction, and avoiding metal splashing When splashing, the audio frequency is relatively low, making it challenging to obtain the sound signal and predict it Image analysis method Real-time detection of flame state and prediction through image recognition can assist in slag and end-point assessment, which is more intuitive High cost and increased implementation requirements. The actual smelting is difficult to use Oxygen lance vibration method Splashing can be predicted by detecting the slagging state The model is complex, there are several interference factors in the furnace, and the prediction accuracy is low 表 4 音頻分析預測噴濺實際應用結果
Table 4. Application of the audio frequency analysis to predict splashing
表 5 聲音信號與圖像處理結合模型預測噴濺實際應用結果
Table 5. Application of the audio frequency analysis to predict splashing
Detection system Percentage of false slopping/% Image only 11 Sound only 33 Image and sound combined 6 259luxu-164 -
參考文獻
[1] Zheng J. Analyses of the slopping cause of 90 t converter in Laiwu steel and the countermeasures. Shandong Metall, 2011, 33(3): 12 doi: 10.3969/j.issn.1004-4620.2011.03.005鄭杰. 萊鋼90 t轉爐噴濺原因分析與對策. 山東冶金, 2011, 33(3): 12 doi: 10.3969/j.issn.1004-4620.2011.03.005 [2] Hu G X. Inquiry into prediction and prevention of splash in steel making. J Wuhan Eng Inst, 2007, 19(3): 17 doi: 10.3969/j.issn.1671-3524.2007.03.005胡國新. 轉爐吹煉噴濺的預測和預防探討. 武漢工程職業技術學院學報, 2007, 19(3): 17 doi: 10.3969/j.issn.1671-3524.2007.03.005 [3] Hu W H, Sun Q J. Prevention and control of splashing in medium and small converter // 2008 National Steel Making Continuous Casting Production Technology Conference. Hangzhou, 2008: 206胡文華, 孫前進. 中小轉爐噴濺的預防與控制//2008年全國煉鋼——連鑄生產技術會議. 杭州, 2008: 206 [4] Xing C, Yao N, Zhang L W. Application of foam slag inhibitor in 60 t converter steelmaking production. Spec Steel, 2019, 40(2): 46 doi: 10.3969/j.issn.1003-8620.2019.02.013興超, 姚娜, 張利武. 泡沫渣抑制劑在60 t轉爐煉鋼生產中的應用. 特殊鋼, 2019, 40(2): 46 doi: 10.3969/j.issn.1003-8620.2019.02.013 [5] Guo C Q, Liu Q. Optimization process oxygen lance position control to reduce the splash of the blowing BOF steelmaking. China Metall, 2015, 25(3): 45郭傳奇, 劉謙. 優化過程槍位控制減少復吹轉爐煉鋼噴濺. 中國冶金, 2015, 25(3): 45 [6] Zhan H T. Analysis and Countermeasures of steel slag splashing injury in converter // 2015 Annual Meeting of Metallurgical Safety and Health of China Metal Society. Xiangtan, 2015: 112占海濤. 轉爐鋼渣噴濺傷人的分析與應對措施//2015中國金屬學會冶金安全與健康年會. 湘潭, 2015: 112 [7] Zhang Q M. Converter splattering mechanism and control measure. Fujian Metall, 2018, 47(1): 33 doi: 10.3969/j.issn.1672-7665.2018.01.011張啟明. 轉爐噴濺的機理及控制措施. 福建冶金, 2018, 47(1): 33 doi: 10.3969/j.issn.1672-7665.2018.01.011 [8] Wang H. BOF splash phenomenon causes analysis and preventive measures. Sci Technol Innov, 2014(17): 2 doi: 10.3969/j.issn.2095-6835.2014.17.002王慧. 轉爐煉鋼噴濺現象的成因分析和預防措施. 科技與創新, 2014(17): 2 doi: 10.3969/j.issn.2095-6835.2014.17.002 [9] Sun G P, Guo Z, Sun Q M, et al. Causes and control of splashing in 110 t converter of Xuanhua Steel // Hebei Province 2010 Steel Making Continuous Casting Rolling Production Technology and Academic Exchange Meeting. Handan, 2010: 305孫貴平, 郭忠, 孫巧梅, 等. 宣鋼110噸轉爐噴濺產生的原因與控制//河北省2010年煉鋼—連鑄—軋鋼生產技術與學術交流會. 邯鄲, 2010: 305 [10] Zhan H T, Wang G J, Geng H L, et al. Principle and countermeasures of converter splashing // South Central Pan Pearl River Delta Steel Making and Continuous Casting Academic Exchange Meeting. Wuhan, 2010: 200占海濤, 王光進, 耿恒亮, 等. 轉爐噴濺發生的原理與應對措施//中南泛珠三角煉鋼連鑄學術交流會. 武漢, 2010: 200 [11] Br?mming M, Engstr?m F, Samuelsson C, et al. Characterization of slag-metal emulsion and its impact on foaming behavior and slopping in the LD process. Steel Res Int, 2018, 90(2): 1800269 [12] Wang J, Zeng J Q, Yang L B. Research status of slag foaming behaviors during steelmaking process. China Metall, 2016, 26(9): 1王杰, 曾加慶, 楊利彬. 煉鋼過程中熔渣泡沫化的研究現狀. 中國冶金, 2016, 26(9): 1 [13] Lotun D, Pilon L. Physical modeling of slag foaming for various operating conditions and slag compositions. ISIJ Int, 2005, 45(6): 835 doi: 10.2355/isijinternational.45.835 [14] Cheng L M, Zhang L F, Shen P. Interfacial phenomena in ironmaking and steelmaking. Chin J Eng, 2018, 40(10): 1139程禮梅, 張立峰, 沈平. 鋼鐵冶金過程中的界面現象. 工程科學學報, 2018, 40(10): 1139 [15] Wang S Z, Li W S, Lv Y. Control and preventive measures for preventing splash in the steelmaking in angang. Henan Metall, 2009, 17(4): 32 doi: 10.3969/j.issn.1006-3129.2009.04.011王三忠, 李文山, 呂亞. 轉爐煉鋼噴濺的控制及預防措施. 河南冶金, 2009, 17(4): 32 doi: 10.3969/j.issn.1006-3129.2009.04.011 [16] Jung S M, Fruehan R J. Foaming characteristics of BOF slags. ISIJ Int, 2000, 40(4): 348 doi: 10.2355/isijinternational.40.348 [17] Kim H S, Min D J, Park J H. Foaming behavior of CaO–SiO2–FeO–MgOsatd–X (X=Al2O3, MnO, P2O5, and CaF2) slags at high temperatures. ISIJ Int, 2001, 41(4): 317 [18] Guo L X, Pang H X, Zheng B, et al. Study of water model on splashing characteristics of 260 t top and bottom combined blown converter and application. Spec Steel, 2022, 43(1): 11 doi: 10.3969/j.issn.1003-8620.2022.01.003郭龍鑫, 龐洪軒, 鄭冰, 等. 260 t頂底復吹轉爐噴濺特征的水模型研究和應用. 特殊鋼, 2022, 43(1): 11 doi: 10.3969/j.issn.1003-8620.2022.01.003 [19] Li L, Li M M, Li Q, et al. Melt splashing behavior of steelmaking converter with nozzle-twisted lance. Iron Steel, 2020, 55(6): 54李琳, 李明明, 李強, 等. 漩流氧槍轉爐煉鋼熔體的噴濺行為. 鋼鐵, 2020, 55(6): 54 [20] Deng L Q, Li M M, Li Q, et al. Numerical modeling on splashing behavior of steelmaking converter. J Mater Metall, 2016, 15(1): 25鄧麗琴, 李明明, 李強, 等. 煉鋼轉爐噴濺行為的數值模擬. 材料與冶金學報, 2016, 15(1): 25 [21] Alam M, Naser J, Brooks G, et al. A computational fluid dynamics model of shrouded supersonic jet impingement on a water surface. ISIJ Int, 2012, 52(6): 1026 doi: 10.2355/isijinternational.52.1026 [22] Liu F H, Zhu R, Dong K, et al. Effect of Laval nozzle structure on behaviors of supersonic oxygen jet flow field. Chin J Eng, 2020, 42(S1): 54劉福海, 朱榮, 董凱, 等. 拉瓦爾噴管結構模式對超音速射流流動特性的影響. 工程科學學報, 2020, 42(S1): 54 [23] Song J, Xie W Z, Sun B, et al. Design and application of 120 t converter oxygen lance nozzle. Steelmaking, 2022, 38(1): 14 doi: 10.3969/j.issn.1002-1043.2022.1.lg202201003宋健, 解文中, 孫波, 等. 120 t轉爐氧槍噴頭參數優化與應用. 煉鋼, 2022, 38(1): 14 doi: 10.3969/j.issn.1002-1043.2022.1.lg202201003 [24] Higuchi Y, Tago Y. Effect of nozzle twisted lance on jet behavior and spitting rate in top blown process. ISIJ Int, 2003, 43(9): 1410 doi: 10.2355/isijinternational.43.1410 [25] Yang W Y, Zhang X G, Lü Y H, et al. Effects of oxygen supply on splashing of BOF. Iron Steel, 2012, 47(11): 32 doi: 10.13228/j.boyuan.issn0449-749x.2012.11.015楊文遠, 張先貴, 呂英華, 等. 轉爐供氧參數對噴濺的影響. 鋼鐵, 2012, 47(11): 32 doi: 10.13228/j.boyuan.issn0449-749x.2012.11.015 [26] Ma D B. Optimization of oxygen lance parameters for 260 t converter. Energy Metall Ind, 2021, 40(2): 33 doi: 10.3969/j.issn.1001-1617.2021.02.007馬德賓. 260 t轉爐氧槍參數優化效果研究. 冶金能源, 2021, 40(2): 33 doi: 10.3969/j.issn.1001-1617.2021.02.007 [27] Yang W Y, Feng C, Wang M L, et al. Water model experiment of high supplying oxygen blowing in large converter. J Iron Steel Res, 2017, 29(10): 807 doi: 10.13228/j.boyuan.issn1001-0963.20160324楊文遠, 馮超, 王明林, 等. 大型轉爐高供氧強度吹煉的水模實驗. 鋼鐵研究學報, 2017, 29(10): 807 doi: 10.13228/j.boyuan.issn1001-0963.20160324 [28] Lyu C H, Zhang H J, Zheng C J, et al. Research on the effect of lance height change of converter oxygen lance on the molten pool. Nonferrous Met Sci Eng, 2020, 11(1): 20呂長海, 張紅軍, 鄭從杰, 等. 轉爐氧槍槍位對熔池作用規律研究. 有色金屬科學與工程, 2020, 11(1): 20 [29] Luomala M J, Fabritius T M J, Virtanen E O, et al. Splashing and spitting behaviour in the combined blown steelmaking converter. ISIJ Int, 2002, 42(9): 944 doi: 10.2355/isijinternational.42.944 [30] Amano S, Sato S, Takahashi Y, et al. Effect of top and bottom blowing conditions on spitting in converter. Eng Rep, 2021, 3(12): e12406 [31] Li M M, Li Q, Zou Z S, et al. Characterization of cavity oscillation and splashing distribution under excitation by bottom gas blowing in a steelmaking converter. JOM, 2018, 71(2): 729 [32] Gu Z Z, Lv A Q. Causes and preventive measures of splashing in the early stage of converter // 2015 Steel Making Variety and Quality Improvement Seminar. Jinan, 2015: 81顧兆祖, 呂愛強. 轉爐前期噴濺的原因及預防措施//2015年煉鋼品種、質量提升研討會. 濟南, 2015: 81 [33] Xiao H. Early splashing control in converter steelmaking. Metall Collect, 2012(3): 17肖虎. 轉爐冶煉前期噴濺的控制. 冶金叢刊, 2012(3): 17 [34] Wang Z L, Chen H Z. Analysis of explosion and melt splashing accident in converter steelmaking. Henan Metall, 1998(4): 63王子亮, 陳華知. 轉爐煉鋼爆炸和熔融物噴濺事故分析. 河南冶金, 1998(4): 63 [35] Deo B, Overbosch A, Snoeijer B, et al. Control of slag formation, foaming, slopping, and chaos in BOF. Trans Indian Inst Met, 2013, 66(5): 543 [36] Br?mming M. An Operational View on Foaming and Slopping Control in Top-Blown BOS Vessels [Dissertation]. Lulea: Lule? Tekniska Universitet, 2015 [37] Kattenbelt C. Modeling and Optimization of Slopping Prevention and Batch Time Reduction in Basic Oxygen Steelmaking [Dissertation]. Enschede: University of Twente, 2008 [38] Evestedt M, Medvedev A, Thorén M, et al. Slopping warning system for the ld converter process - an extended evaluation study. IFAC Proc Vol, 2007, 40(11): 267 doi: 10.3182/20070821-3-CA-2919.00040 [39] Br?mming M, Bj?rkman B, Samuelsson C. BOF process control and slopping prediction based on multivariate data analysis. Steel Res Int, 2016, 87(3): 301 doi: 10.1002/srin.201500040 [40] Lin W H, Jiao S Q, Sun J K, et al. Modified exponential model for carbon prediction in the end blowing stage of basic oxygen furnace converter. Chin J Eng, 2020, 42(7): 854林文輝, 焦樹強, 孫建坤, 等. 轉爐吹煉后期碳含量預報的改進指數模型. 工程科學學報, 2020, 42(7): 854 [41] Wan X F. Dynamic Prediction Model of Converter Based on Furnace Gas Analysis [Dissertation]. Liaoning: Northeastern University, 2006萬雪峰. 基于爐氣分析的轉爐動態預測模型[學位論文]. 遼寧: 東北大學, 2006 [42] Hu Z G, Liu L, He P. Application of gas analysis in converter dynamic control. J Iron Steel Res, 2002(3): 68 doi: 10.3321/j.issn:1001-0963.2002.03.016胡志剛, 劉瀏, 何平. 爐氣分析在轉爐動態控制中的應用. 鋼鐵研究學報, 2002(3): 68 doi: 10.3321/j.issn:1001-0963.2002.03.016 [43] Hu Z G, Liu L, He P, et al. Slopping prediction and control on 150 t bof by off-gas analysis. Iron Steel, 2004(2): 18 doi: 10.3321/j.issn:0449-749X.2004.02.005胡志剛, 劉瀏, 何平, 等. 150 t轉爐利用爐氣分析進行噴濺預報及控制. 鋼鐵, 2004(2): 18 doi: 10.3321/j.issn:0449-749X.2004.02.005 [44] Wan X F, Zhang G Y, Lin D, et al. Variation rule of off-gas component in BOF. China Metall, 2006(1): 23 doi: 10.3969/j.issn.1006-9356.2006.01.007萬雪峰, 張貴玉, 林東, 等. 轉爐爐氣成分變化規律的初步研究. 中國冶金, 2006(1): 23 doi: 10.3969/j.issn.1006-9356.2006.01.007 [45] Sun C B, Liu N, Yang X L. Practice on monitoring scorification technology of converter with CO concentration curve. Sci Technol Baotou Steel, 2021, 47(1): 38 doi: 10.3969/j.issn.1009-5438.2021.01.012孫承碧, 劉南, 楊小龍. 利用CO濃度曲線監控轉爐造渣工藝實踐. 包鋼科技, 2021, 47(1): 38 doi: 10.3969/j.issn.1009-5438.2021.01.012 [46] Zhang L J. Steel-making splash control technology based on converter CO gas analysis. Shanxi Metall, 2020, 43(6): 127 doi: 10.16525/j.cnki.cn14-1167/tf.2020.06.49張立君. 基于轉爐CO氣體分析的煉鋼噴濺控制技術. 山西冶金, 2020, 43(6): 127 doi: 10.16525/j.cnki.cn14-1167/tf.2020.06.49 [47] Liang S Q, Liu X G, Chen S, et al. Application of converter gas CO analysis in steelmaking process. China Metall, 2018, 28(12): 48梁三清, 劉小剛, 陳帥, 等. 轉爐爐氣CO分析在煉鋼過程中的應用. 中國冶金, 2018, 28(12): 48 [48] Zhang D Y, Zhang C J, Xu Z R. Exploitation and application of audio frequency slag melting in 150 t combined blowing converter. China Metall, 2007(8): 20 doi: 10.3969/j.issn.1006-9356.2007.08.006張大勇, 張彩軍, 徐志榮. 音頻化渣技術在150 t復吹轉爐上的開發與應用. 中國冶金, 2007(8): 20 doi: 10.3969/j.issn.1006-9356.2007.08.006 [49] Yang S B, Zhang S H. Sonar monitored method for slag-making in converter. J Univ Sci Technol Beijing, 1995(3): 229楊尚寶, 張叔和. 轉爐造渣的聲納監控方法. 北京科技大學學報, 1995(3): 229 [50] Jiang X F, Liu C H, Xie L D. Development and application of the sonic slag technology for 300 t converter at baosteel. Bao Steel Technol, 2000(2): 41蔣曉放, 劉春華, 謝良德. 寶鋼300 t轉爐音平控渣技術的開發與應用. 寶鋼技術, 2000(2): 41 [51] Liu Z J. Practice of on-line control of slag technology. Metall Collect, 2016(3): 46劉忠建. 在線控制爐渣技術實踐. 冶金叢刊, 2016(3): 46 [52] Li J Y. Application of audio frequency slagging technology in combined blowing converter of Chongqing Iron and Steel Co. Sci Wealth, 2019(19): 197李繼勇. 音頻化渣技術在重鋼復吹轉爐上的應用. 科學與財富, 2019(19): 197 [53] Pang S Y, Wang S Y, Jia H S. Recognition of converter flame state based on ResNet neural network. Metall Ind Autom, 2021, 45(1): 34龐殊楊, 王姝洋, 賈鴻盛. 基于殘差神經網絡實現轉爐火焰狀態識別. 冶金自動化, 2021, 45(1): 34 [54] Ghosh B. Opto-Acoustic Slopping Prediction System in Basic Oxygen Furnace Converters [Dissertation]. Stockholm: KTH Royal Institute of Technology, 2017 [55] Batista L G, Salarolli P F, de Menezes R P, et al. Slopping detection system for LD converters using sound signal digital and image processing // 2018 13th IEEE International Conference on Industry Applications (INDUSCON). Sao Paulo, 2018: 1137 -