Experimental study on the triaxial static shear characteristics of Yellow River silt under different initial states
-
摘要: 開展了一系列靜態三軸剪切試驗,研究了不同初始條件(圍壓、密實度)以及不同試驗條件(剪切速率、排水條件)對黃河泥沙靜力強度以及變形特性的影響,得到了黃河泥沙的應力應變曲線發展規律,以及應力路徑、抗剪強度包線、應力比曲線和不同特征狀態下的內摩擦角分布、初始剪切模量以及極限偏應力等指標。結果表明:黃河泥沙的抗剪強度對圍壓、密實度以及排水條件更為敏感,具體而言,峰值強度、臨界強度均隨著圍壓與密實度的提高而增大,不排水條件下的抗剪強度大于排水條件;不排水條件下孔壓的發展與排水條件下的剪脹特性具有對照關系,但孔壓較剪脹特性發展得更為迅速,并且得到黃河泥沙的特征狀態內摩擦角分布區間介于22.6°到38.1°之間。本研究可以為黃河泥沙在路基工程中的資源化利用提供數據和理論參考。Abstract: The middle and lower reaches of the Yellow River are rich in silt. The Yellow River silt can be utilized as a subgrade filling material along the Yellow River expressway to enhance its resource utilization potential. However, research on the geotechnical mechanical properties of the Yellow River silt is limited. In this study, a series of triaxial shear tests were conducted using the global digital systems triaxial apparatus to examine the effects of initial conditions (confining pressure and relative density) and test conditions (shear rate and drainage conditions) on the static strength and deformation characteristics of the Yellow River silt. The stress–strain curve, volumetric strain curve, envelope of shear strength, stress ratio curve, and internal friction angle distribution under different characteristic states were obtained. The test results showed that the shear strength of the Yellow River silt was more sensitive to confining pressure, relative density, and drainage conditions. The stress–strain curves of the Yellow River silt samples under drained conditions showed a slight strain-softening phenomenon; therefore, there were three characteristic states: peak state, phase transformation state, and critical state. Moreover, the stress–strain curves of the Yellow River silt samples under undrained conditions showed strain hardening characteristics, and there existed three characteristic states: the peak state, critical state, and peak pore pressure state. Additionally, the Yellow River silt samples simultaneously reached the peak and critical states at the end of the shear procedure. Specifically, the strength at the peak and critical states increased with increasing confining pressure and relative density. The shear strength under the undrained conditions was greater than that under the drained conditions. The development of pore pressure under the undrained conditions was in contrast with the dilatancy characteristics under the drained conditions; however, the pore pressure developed more rapidly than that depicted by the dilatancy characteristics. The distribution interval of the friction angle at the characteristic states of the Yellow River silt was between 22.6° and 38.1°. The initial shear modulus and ultimate deviator stress of the Yellow River silt increased with increasing confining pressure and relative density but were not sensitive to the shear rate. The ultimate deviator stress under undrained conditions was greater than that under drained conditions, while the initial shear modulus under drained conditions was smaller than that under undrained conditions under medium–low confining pressure. To strengthen the shear resistance of Yellow River silt, more attention should be paid to improving the compaction degree when the Yellow River silt is used as the filling material of expressway subgrades. This study can provide data and theoretical references for the resource utilization of Yellow River silt in subgrade engineering.
-
Key words:
- Yellow River silt /
- triaxial test /
- strength /
- deformation /
- characteristic state
-
表 1 黃河泥沙基本物理性質
Table 1. Basic physical properties of Yellow River silt
Coefficient of uniformity, Cu Coefficient of graduation, Cc ρdmax/(g·cm?3) ρdmin/(g·cm?3) Liquid limit, ωL/% Plastic limit, ωP/% IP GS 5.08 1.662 1.65 1.357 23.8 12.4 11.4 2.7 表 2 黃河泥沙三軸試驗方案
Table 2. Triaxial test program of Yellow River silt
Test type Confining pressure/kPa Relative density/% Shear rate/(kPa·min?1) CD/CU 50 60 7 100 40 7 60 2, 7, 12 80 7 200 60 7 400 60 7 600 60 7 表 3 特征狀態下的強度擬合包線參數值
Table 3. Parameters of fitting strength envelope at characteristic states
Test type Characteristic states A n R2 CD Critical state 1.16 1.02 0.99 Peak state 1.24 0.99 0.99 Phase transformation state 0.98 1.08 0.99 CU Peak (critical) state 1.25 1.03 0.99 Peak pore pressure state 1.1 1.08 0.99 表 4 排水條件下各特征狀態對應的內摩擦角
Table 4. Internal friction angles at different characteristic states under CD condition
Confining pressure/kPa Relative density/% Shear rate/(kPa·min?1) φps/(°) φcs/(°) φpt/(°) 50 60 7 31.8 30 23.95 100 40 7 27.5 26.9 23.76 60 2, 7, 12 34.4, 33.2, 30.5 32.9, 31.7, 29.3 26.31, 26.03, 24.28 80 7 38.1 33.8 27.6 200 60 7 28.7 26.8 25.21 400 60 7 31.6 30.9 29.24 600 60 7 30.6 29.8 29.17 表 5 不排水條件特征狀態下的內摩擦角
Table 5. Internal friction angles at different characteristic states under CU condition
Confining pressure/kPa Relative density/% Shear rate/(kPa·min?1) φp(φcs)/(°) φup/(°) 50 60 7 32.9 28.1 100 40 7 25.7 22.6 60 2, 7, 12 32.9, 32.6, 32.8 28.1, 29.1, 29.4 80 7 34.1 29.6 200 60 7 33.2 30.2 400 60 7 33.2 31.2 600 60 7 34.1 32.7 表 6 不同試驗條件下的初始剪切模量以及極限偏應力
Table 6. Initial shear modulus and ultimate deviator stress strength under different test conditions
Confining pressure/kPa Relative
density/%Shear rate/(kPa·min?1) Test type a Ei/MPa b (σ1–σ3)ult/MPa R2 50 60 7 CD 3.05 0.33 9.33 0.11 0.994 100 60 7 CD 1.63 0.61 4.13 0.24 0.989 200 60 7 CD 1.16 0.86 2.28 0.44 0.986 400 60 7 CD 0.84 1.19 1.02 0.98 0.993 600 60 7 CD 0.80 1.25 0.69 1.45 0.991 100 40 7 CD 4.94 0.20 5.18 0.19 0.984 100 80 7 CD 1.39 0.72 3.26 0.31 0.972 100 60 2 CD 1.61 0.62 4.01 0.25 0.981 100 60 12 CD 1.69 0.59 4.87 0.21 0.996 50 60 7 CU 7.46 0.13 1.72 0.58 0.994 100 60 7 CU 4.09 0.24 1.54 0.65 0.99 200 60 7 CU 1.81 0.55 1.09 0.92 0.991 400 60 7 CU 0.91 1.10 0.77 1.30 0.996 600 60 7 CU 0.61 1.64 0.67 1.49 0.999 100 40 7 CU 6.45 0.16 4.21 0.24 0.976 100 80 7 CU 3.72 0.27 0.77 1.30 0.995 100 60 2 CU 3.91 0.26 1.37 0.73 0.991 100 60 12 CU 3.60 0.28 1.68 0.60 0.980 259luxu-164 -
參考文獻
[1] An C H, Guo X Y, Wu H L, et al. Study on configuration scheme of sediment treatment and utilization of the Yellow River. Yellow River, 2013, 35(10): 54 doi: 10.3969/j.issn.1000-1379.2013.10.018安催花, 郭選英, 吳海亮, 等. 黃河泥沙處理和利用配置方案研究. 人民黃河, 2013, 35(10):54 doi: 10.3969/j.issn.1000-1379.2013.10.018 [2] Lin X Y, Liao Z S, Su X S, et al. Groundwater resources and their countermeasures of development and utilization in Yellow River Basin. J Jilin Univ (Earth Sci Ed), 2006, 36(5): 677林學鈺, 廖資生, 蘇小四, 等. 黃河流域地下水資源及其開發利用對策. 吉林大學學報(地球科學版), 2006, 36(5):677 [3] Wang J, Yao S M, Zhou Y J. Review on river sediment resources utilization in China. J Sediment Res, 2019, 44(1): 73 doi: 10.16239/j.cnki.0468-155x.2019.01.011王軍, 姚仕明, 周銀軍. 我國河流泥沙資源利用的發展與展望. 泥沙研究, 2019, 44(1):73 doi: 10.16239/j.cnki.0468-155x.2019.01.011 [4] He H T, Yue Q Y, Su Y, et al. Preparation and mechanism of the sintered bricks produced from Yellow River silt and red mud. J Hazard Mater, 2012, 203-204: 53 doi: 10.1016/j.jhazmat.2011.11.095 [5] Jiang S, Xu J X, Song Y B, et al. Effect of calcination pretreatment on mechanical properties of alkali-activated artificial stone incorporating Yellow River silt. J Clean Prod, 2022, 364: 132682 doi: 10.1016/j.jclepro.2022.132682 [6] Yang L Y, Ma X, Mei R F, et al. Study on preparation and performance of ceramsite from sediment in Yellow River desilting basin. Inorg Chem Ind, 2022, 54(5): 109楊麗艷, 馬鑫, 梅銳鋒, 等. 黃河流域沉沙池泥沙制備陶粒及其性能研究. 無機鹽工業, 2022, 54(5):109 [7] Zhang X N, Sun H, Jiang P, et al. Development and performance characterization of a composite dust suppressant for Yellow River alluvial silt using response surface methodology. J Clean Prod, 2022, 376: 134293 doi: 10.1016/j.jclepro.2022.134293 [8] Zhang H B, Liu M P, Shuo Z, et al. An experimental investigation of the triaxial shear behaviors of silt-based foamed concrete. Case Stud Constr Mater, 2021, 15: e00713 [9] Wang B M, Li G N, Han J N, et al. Study on the properties of artificial flood-prevention stone made by Yellow River silt. Constr Build Mater, 2017, 144: 484 doi: 10.1016/j.conbuildmat.2017.03.206 [10] Zhan J, He Y J, Zhao G Z, et al. Quantitative evaluation of the spatial variation of surface soil properties in a typical alluvial plain of the lower Yellow River using classical statistics, geostatistics and single fractal and multifractal methods. Appl Sci, 2020, 10(17): 5796 doi: 10.3390/app10175796 [11] Zhang J R, Meng Q S, Zhang Y, et al. Effect of penetration rates on the piezocone penetration test in the Yellow River Delta silt. J Ocean Univ China, 2022, 21(2): 361 doi: 10.1007/s11802-022-4934-1 [12] Du X, Sun Y F, Song Y P, et al. In-situ observation of wave-induced pore water pressure in seabed silt in the Yellow River Estuary of China. J Mar Environ Eng, 2021, 10(4): 305 [13] Liu X L, Zhang M S, Zhang H, et al. Physical and mechanical properties of loess discharged from the Yellow River into the Bohai Sea, China. Eng Geol, 2017, 227: 4 doi: 10.1016/j.enggeo.2017.04.019 [14] Zhang H, Liu X L, Jia Y G, et al. Rapid consolidation characteristics of Yellow River-derived sediment: Geotechnical characterization and its implications for the deltaic geomorphic evolution. Eng Geol, 2020, 270: 105578 doi: 10.1016/j.enggeo.2020.105578 [15] Zhao R H, Hua L L, Liu H Y, et al. Feasibility study on Yellow River sediment used in subgrade filling of expressway. Yellow River, 2021, 43(2): 122 doi: 10.3969/j.issn.1000-1379.2021.02.025趙然杭, 華麗麗, 劉恒洋, 等. 黃河泥沙用于高速公路路基填筑的可行性研究. 人民黃河, 2021, 43(2):122 doi: 10.3969/j.issn.1000-1379.2021.02.025 [16] Yuan Y Q, Li W, Guo T, et al. Study on water stability of silty soil in eastern Henan section formerly flooded by the Yellow River. J Henan Univ (Nat Sci), 2015, 45(2): 235袁玉卿, 李偉, 郭濤, 等. 豫東黃泛區粉砂土的水穩定性研究. 河南大學學報(自然科學版), 2015, 45(2):235 [17] Yuan Y Q, Zhou J, Song K, et al. Test on engineering properties of silty soil in Yellow River flooded area of eastern Henan. J Henan Univ (Nat Sci), 2020, 50(5): 602袁玉卿, 周婧, 宋寬, 等. 豫東黃泛區粉砂土工程性質試驗. 河南大學學報(自然科學版), 2020, 50(5):602 [18] Liu M C, Hu S F, Dai P F. Investigation on shear behavior of calcareous sand in South China Sea in undrained triaxial tests. China J Highw Transp, 2022, 35(4): 69 doi: 10.3969/j.issn.1001-7372.2022.04.004劉萌成, 胡帥峰, 戴鵬飛. 南海鈣質砂不排水剪切特性三軸試驗. 中國公路學報, 2022, 35(4):69 doi: 10.3969/j.issn.1001-7372.2022.04.004 [19] Yi M H. Static Characteristics and Particle Crushing Characteristics of Coarse-grained Soil of Red Sandstone [Dissertation]. Xiangtan: Hunan University of Science and Technology, 2020易梅輝. 紅砂巖粗粒土的靜力特性與顆粒破碎特征[學位論文]. 湘潭: 湖南科技大學, 2020 [20] Yin K Y. Study on Particle Crushing and Wetting Deformation Characteristics of Soft Rock Filler [Dissertation]. Xi'an: Changan University, 2020殷坤垚. 軟巖填料顆粒破碎及濕化變形特性研究[學位論文]. 西安: 長安大學, 2020 [21] Ma Y. Experimental Study on Deformation Characteristics of Loess Subgrade in Yuzhong under Dry-wet Cycle [Dissertation]. Lanzhou: Lanzhou Jiatong University, 2020馬瑩. 干濕循環作用下榆中黃土路基變形特性試驗研究[學位論文]. 蘭州: 蘭州交通大學, 2020 [22] Nie R S, Dong J L, Cheng L H, et al. The study on static triaxial test of heavy haul railway filler of subgrade roadbed under low confining pressure. J Railw Sci Eng, 2019, 16(11): 2707聶如松, 董俊利, 程龍虎, 等. 重載鐵路基床填料低圍壓靜三軸試驗研究. 鐵道科學與工程學報, 2019, 16(11):2707 [23] Chen Z M, Jin M D, Xu Y F, et al. Strength characteristics of cement stabilized sea sand. Environ Sci Technol, 2018, 41(4): 22陳志明, 金明東, 徐永福, 等. 水泥固化吹填海砂的強度特性. 環境科學與技術, 2018, 41(4):22 [24] Wang Q Y, Zhang J S, Deng G D, et al. Large-scale triaxial test study on shear dilatancy of subgrade filler of group B coarse-grained soil of high speed railway. J Railw Sci Eng, 2015, 12(4): 731 doi: 10.3969/j.issn.1672-7029.2015.04.003王啟云, 張家生, 鄧國棟, 等. 高速鐵路路基粗粒土B組填料剪脹特性的大型三軸試驗研究. 鐵道科學與工程學報, 2015, 12(4):731 doi: 10.3969/j.issn.1672-7029.2015.04.003 [25] Cheng Z H, Song Z Y, Huang B, et al. Experiment of influence of stone content and clay content on mechanical properties of compacted gravelly soil. China J Highw Transp, 2018, 31(8): 47 doi: 10.3969/j.issn.1001-7372.2018.08.005程澤海, 宋澤源, 黃博, 等. 含石量與含泥量對壓實礫石土力學特性影響的試驗. 中國公路學報, 2018, 31(8):47 doi: 10.3969/j.issn.1001-7372.2018.08.005 [26] Wang Y K, Cao T C, Shao J G, et al. Experimental study on static characteristics of the Yellow River silt under (triaxial) consolidated undrained conditions. Mar Georesources Geotechnol, 2023, 41(3): 285 doi: 10.1080/1064119X.2022.2030827 [27] Ren J. Mechanical Properties of Fujian Standard Sand under High Pressure Triaxial Test [Dissertation]. Jilin: Northeast Dianli University, 2018任杰. 高壓三軸試驗下福建標準砂的力學特性[學位論文]. 吉林: 東北電力大學, 2018 [28] Xiang Y Y. Triaxial Test Study on Shear Characteristics of Calcareous Sand in Coral Reefs [Dissertation]. Hangzhou: Zhejiang University of Technology, 2020相盈盈. 珊瑚礁鈣質砂剪切特性三軸試驗研究[學位論文]. 杭州: 浙江工業大學, 2020 [29] Ishihara K, Tatsuoka F, Yasuda S. Undrained deformation and liquefaction of sand under cyclic stresses. Soils Found, 1975, 15(1): 29 doi: 10.3208/sandf1972.15.29 [30] Andersen K H, Schjetne K. Database of friction angles of sand and consolidation characteristics of sand, silt, and clay. J Geotech Geoenviron Eng, 2013, 139(7): 1140 doi: 10.1061/(ASCE)GT.1943-5606.0000839 [31] Liu M C, Liu H L, Gao Y F. New double yield surface model for coarse granular materials incorporating nonlinear unified failure criterion. J Cent South Univ, 2012, 19(11): 3236 doi: 10.1007/s11771-012-1400-z [32] Baker R. Nonlinear Mohr envelopes based on triaxial data. J Geotech Geoenviron Eng, 2004, 130(5): 498 doi: 10.1061/(ASCE)1090-0241(2004)130:5(498) [33] Sadrekarimi A, Olson S M. Critical state friction angle of sands. Géotechnique, 2011, 61(9): 771 [34] Wu Y, Yamamoto H, Cui J, et al. Influence of load mode on particle crushing characteristics of silica sand at high stresses. Int J Geomech, 2020, 20(3): 04019194 doi: 10.1061/(ASCE)GM.1943-5622.0001600 [35] Xiao Y, Liu H L, Chen Y M, et al. Strength and deformation of rockfill material based on large-scale triaxial compression tests. I:Influences of density and pressure. J Geotech Geoenviron Eng, 2014, 140(12): 04014070 [36] Yu F W, Su L J. Particle breakage and the mobilized drained shear strengths of sand. J Mt Sci, 2016, 13(8): 1481 doi: 10.1007/s11629-016-3870-1 [37] Alps M. The Phase Transformation Friction Angle of Sand [Dissertation]. Las Vegas: University of Nevada, 2007 [38] Zhang H Q, Tannant D D, Jing H W, et al. Evolution of cohesion and friction angle during microfracture accumulation in rock. Nat Hazards, 2015, 77(1): 497 doi: 10.1007/s11069-015-1592-2 [39] Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soils. J Soil Mech And Found Div, 1970, 96(5): 1629 doi: 10.1061/JSFEAQ.0001458 -